Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Historical genetic stability in the Common Buzzard Buteo buteo (Linnaeus, 1758) of Belarus

https://doi.org/10.29235/1029-8940-2026-71-1-17-24

Abstract

This study examines the historical haplotype composition of the mitochondrial pseudocontrol region in the breeding population of the common buzzard (Buteo buteo) in Belarus, spanning the past century. A molecular genetic analysis of 30 specimens collected between 1928 and 2020 revealed a consistent haplotype profile within the Belarusian population, demonstrating long-term stability in genetic structure. Comparative analyses identified genetic links between this population and broader European groups of the species. Notably, the persistence of low genetic diversity in the Belarusian common buzzards population suggests minimal influence from migration dynamics and historical mass culling campaigns targeting large raptors. These findings highlight the population’s limited exposure to external demographic pressures over time, offering critical insights into its ecological resilience and informing future conservation strategies.

About the Authors

A. A. Valnisty
Scientific and Practical Centre of the Na- tional Academy of Sciences of Belarus for Bioresources
Belarus

Arseni A. Valnisty – Researcher

27, Akademisheskaya Str., 220072, Minsk



L. O. Dasheuskaya
Scientific and Practical Centre of the Na- tional Academy of Sciences of Belarus for Bioresources
Belarus

Lidziya O. Dasheuskaya – Junior Researcher

27, Akademisheskaya Str., 220072, Minsk



G. V. Sergeev
Institute of Bioorganic Chemistry of the National Academy of Sciences
Belarus

Gennady V. Sergeev – Ph. D. (Chem.), Head of the Laboratory

5/2, Academician Kupre- vich Str., 220141, Minsk



M. E. Nikiforov
Scientific and Practical Centre of the Na- tional Academy of Sciences of Belarus for Bioresources
Belarus

Mikhail E. Nikiforov – Academician, D. Sc. (Biol.), Head of the Laboratory

27, Akademisheskaya Str., 220072, Minsk



References

1. Nikiforov M. E., Samusenko I. E. Regional list of birds and immigration ornithofaunogenesis. Aktual’nye problemy zoologicheskoi nauki v Belarusi: sbornik statei XI Zoologicheskoi Mezhdunarodnoi nauchno-prakticheskoi konferentsii, priurochennoi k desyatiletiyu osnovaniya GNPO “NPTs NAN Belarusi po bioresursam”, Belarus’, Minsk, 1–3 noyabrya 2017 goda [Current issues of zoological science in Belarus: a collection of articles from the XI Zoological International Scientific and Practical Conference, dedicated to the tenth anniversary of the founding of the State Scientific and Production Association “Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources”, Belarus, Minsk, November 1–3, 2017]. Minsk, 2017, pp. 275–293 (in Russian).

2. Dement’ev, G. P. Nuzhno li istreblyat’ khishchnykh ptits? Okhota i okhotnich’e khozyaistvo [Hunting and hunting management], 1962, no. 11, pp. 25–26 (in Russian).

3. Galushin, V. M. Khishchnye ptitsy. Moscow, Lesnaya Promyshlennost’ Publ., 1970. 136 p. (in Russian).

4. Shergalin E. The scale of the destruction of diurnal birds of prey in the Republic of Estonia in 1892–1964 – on the half-century anniversary of the introduction of a ban on shooting birds of prey in Northern Eurasia. Khishchnye ptitsy Severnoi Evrazii. Problemy i adaptatsii v sovremennykh usloviyakh: materialy VII Mezhdunarodnoi konferentsii Rabochei gruppy po sokoloobraznym i sovam Severnoi Evrazii, Sochi, 19–24 sentyabrya 2016 goda [Birds of Prey of Northern Eurasia. Problems and Adaptations in Modern Conditions: Proceedings of the 7th International Conference of the Working Group on Falconiformes and Owls of Northern Eurasia, Sochi, September 19–24, 2016]. Rostov-on-Don, 2016, pp. 110–112 (in Russian).

5. Schef E. Identification Key for Diurnal Birds of Prey Based on Their Claws. Leningrad, Nachatki znanii Publ., 1926. 48 p. (in Russian).

6. Gusev O. Whom Are We Actually Destroying? Okhota i okhotnich’e khozyaistvo [Hunting and hunting management], 1969, no. 9, pp. 28–30 (in Russian).

7. Aksenova E. A., Lukhanina N. V., Shimkevich A. M., Dombrovskii V. Ch., Ivanovskii V. V., Sinyavskaya M. G., Davydenko O. G., Nikiforov M. E. Species Differentiation of Greater and Lesser Spotted Eagles Using Molecular Genetic Markers. Izuchenie i okhrana bol’shogo i malogo podorlikov v Severnoi Evrazii: materialy V Mezhdunarodnoi konferentsii po khishchnym ptitsam Severnoi Evrazii (Ivanovo, 4–7 fevralya, 2008 goda) [Study and conservation of Greater and Lesser Spotted Eagles in Northern Eurasia: Proceedings of the International Conference on Birds of Prey of Northern Eurasia (Ivanovo, 4–7 February 2008)]. Ivanovo, 2008, pp. 18–25 (in Russian).

8. Jowers M. J., Sánchez-Ramírez S., Lopes S., Karyakin I., Dombrovski V., Qninba A., Valkenburg T., Onofre N., Ferrand N., Beja P., Palma L., Godinho R. Unravelling population processes over the Late Pleistocene driving contemporary genetic divergence in Palearctic buzzards. Molecular Phylogenetics and Evolution, 2019, vol. 134, pp. 269–281. https://doi.org/10.1016/j.ympev.2019.02.004

9. Gousy-Leblanc M., Yannic G., Therrien J.-F., Lecomte N. Mapping our knowledge on birds of prey population genetics. Conservation Genetics, 2021, vol. 22, no. 5, pp. 685–702. https://doi.org/10.1007/s10592-021-01384-9

10. Jackson H. A., Percival‐Alwyn L., Ryan C., Albeshr M. F., Venturi L., Morales H. E., Mathers T. C. [et al.]. Genomic erosion in a demographically recovered bird species during conservation rescue. Conservation Biology, 2022, vol. 36, no. 4, art. e13918. https://doi.org/10.1111/cobi.13918

11. Kruckenhauser L., Haring E., Pinsker W., Riesing M. J., Winkler H., Wink M., Gamauf A. Genetic vs. morphological differentiation of Old World buzzards (genus Buteo, Accipitridae). Zoologica Scripta, 2004, vol. 33, no. 3, pp. 197–211. https://doi.org/10.1111/j.0300-3256.2004.00147.x

12. Katoh K., Standley D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 2013, vol. 30, no. 4, pp. 772–780. https://doi.org/10.1093/molbev/mst010

13. Okonechnikov K., Golosova O., Fursov M., the UGENE team. Unipro UGENE: A Unified Bioinformatics Toolkit. Bioinformatics, 2012, vol. 28, no. 8, pp. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

14. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., E Ramos-Onsins S., Sánchez-Gracia A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 2017, vol. 34, no. 12, pp. 3299–3302. https://doi.org/10.1093/molbev/msx248

15. Leigh J. W., Bryant D. popart: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 2015, vol. 6, no. 9, pp. 1110–1116. https://doi.org/10.1111/2041-210x.12410

16. Šotnár K., Obuch J. Feeding Ecology of a Nesting Population of the Common Buzzard (Buteo buteo) in the Upper Nitra Region, Central Slovakia. Slovak Raptor Journal, 2009, vol. 3, no. 1, pp. 13–20. https://doi.org/10.2478/v10262-012-0028-0

17. Fufachev I. A., Ehrich D., Sokolova N. A., Sokolov V. A., Sokolov A. A. Flexibility in a Changing Arctic Food Web: Can Rough‐Legged Buzzards Cope with Changing Small Rodent Communities? Global Change Biology, 2019, vol. 25, no. 11, pp. 3669–3679. https://doi.org/10.1111/gcb.14790


Review

Views: 26

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)