Allelic diversity of the Norway spruce leucoanthocyanidin reductase gene (PaLAR3) promoter in Belarus
https://doi.org/10.29235/1029-8940-2025-70-4-284-292
Abstract
The article presents the results of a genetic evaluation of the diversity of allelic variants of the PaLAR3 gene promoter, which determines some stages of flavonoid metabolism in Norway spruce (Picea abies (L.) H. Karst.). The activity of production of flavan-3,4-diol-(+)-catechin derivatives depends on the structure of the PaLAR3 gene promoter and affects the formation of resistance of Norway spruce to spruce root rot, a condition induced by the phytopathogenic fungus Heterobasidion parviporum Niemelä & Korhonen.
The experimental material for the research was collected from 950 trees of European spruce during the period 2017–2023. These trees were growing in various regions of Belarus both in forest seed plantations of the 1st and 2nd generation and in forest crops.
A molecular genetic analysis of the PaLAR3 gene promoter revealed eight amplicon size variants belonging to two major allele groups: A (A – 470 bp, A1 – 488 bp) – susceptible phenotype of spruce to H. parviporum; B (B – 345 bp, B1 – 342 bp, C – 376 bp, C1 – 394 bp, D – 331 bp, and D1 – 339 bp) – resistant phenotype. The analysis of the occurrence of allelic variants among all the trees studied showed that the susceptible A allele group (65.40 %), and A allele (62.75 %) directly had the highest representation. Group B (34.60 %), included the dominant allele variant B (32.35 %) and its rare variants, with an incidence of less than 1 %.
Keywords
About the Authors
A. M. NiastsiukBelarus
Antonina M. Niastsiuk – Researcher, V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus.
27, Akademicheskaya Str., 220072, Minsk
S. V. Panteleev
Belarus
Stanislav V. Panteleev – Ph. D. (Biol.), Associate Professor, Head of the Laboratory, Forest Institute of the National Academy of Sciences of Belarus.
71, Proletarskaya Str., 246050, Gomel
A. V. Padutov
Belarus
Alexander V. Padutov – Researcher, Forest Institute of the National Academy of Sciences of Belarus.
71, Proletarskaya Str., 246050, Gomel
O. Yu. Baranov
Belarus
Oleg Yu. Baranov – Corresponding Member, D. Sc. (Biol.), Professor, Academician-Secretary of the Department of Biological Sciences of the National Academy of Sciences of Belarus.
66, Nezavisimosti Ave., 220072, Minsk
References
1. Brignolas F., Lacroix B., Lieutier F., Sauvard D., Drouet A., Claudot A. C., Yart A., Berryman A. A., Christiansen E. Induced Responses in Phenolic Metabolism in Two Norway Spruce Clones after Wounding and Inoculations with Ophiostoma polonicum, a Bark Beetle-Associated Fungus. Plant Physiology, 1995, vol. 109, no. 3, pp. 821–827. https://doi.org/10.1104/pp.109.3.821
2. Brignolas F., Lieutier F., Sauvard D., Christiansen E., Berryman A. A. Phenolic predictors for Norway spruce resistance to the bark beetle Ips typographus (Coleoptera: Scolytidae) and an associated fungus, Ceratocystis polonica. Canadian Journal of Forest Research, 1998, vol. 28, no. 5, pp. 720–728. https://doi.org/10.1139/x98-037
3. Lieutier F., Brignolas F., Sauvard D., Yart A., Galet C., Brunet M., van de Sype H. Intra- and inter-provenance variability in phloem phenols of Picea abies and relationship to a bark beetle-associated fungus. Tree Physiology, 2003, vol. 23, no. 4, pp. 247-256. https://doi.org/10.1093/treephys/23.4.247
4. Danielsson M., Lundén K., Elfstrand M., Hu J., Zhao T., Arnerup J., Ihrmark K., Swedjemark G., Borg-Karlson A.-K., Stenlid J. Chemical and transcriptional responses of Norway spruce genotypes with different susceptibility to Heterobasidion spp. Infection. BMC Plant Biology, 2011, vol. 11, art. 154. https://doi.org/10.1186/1471-2229-11-154
5. Fossdal C. G., Nagy N. E., Hietala A. M., Kvaalen H., Slimestad R., Woodward S., Solheim H. Indications of heightened constitutive or primed host response affecting the lignin pathway transcripts and phenolics in mature Norway spruce clones. Tree Physiology, 2012, vol. 32, no. 9, pp. 1137–1147. https://doi.org/10.1093/treephys/tps073
6. Porth I., White R., Jaquish B., Alfaro R., Ritland C., Ritland K. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce. PLoS One, 2012, vol. 7, no. 9, аrt. e44397. https://doi:10.1371/journal.pone.0044397
7. Lind M., Källman T., Chen J., Ma X.-F., Bousquet J., Morgante M., Zaina G., Karlsson B., Elfstrand M., Lascoux M., Stenlid J. A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection. PLoS ONE, 2014, vol. 9, no. 7, аrt. e101049. https://doi.org/10.1371/journal.pone.0101049
8. Nemesio-Gorriz M., Hammerbacher A., Ihrmark K., Källman T., Olson Å., Lascoux M., Stenlid J., Gershenzon J., Elfstrand M. Different alleles of a gene encoding leucoanthocyanidin reductase (PaLAR3) influence resistance against the fungus Heterobasidion parviporum in Picea abies. Plant Physiology. 2016, vol. 171, no. 4, pp. 2671–2681. https://doi.org/10.1104/pp.16.00685
9. Stranger B. E, Forrest M. S, Dunning M., Ingle C. E., Beazley C., Thorne N. [et al.]. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 2007, vol. 315, no. 5813, pp. 848–853. https://doi.org/10.1126/science.1136678
10. Bansal M., Kumar A., Yella V. R. Role of DNA sequence based structural features of promoters in transcription initiation and gene expression. Current Opinion in Structural Biology, 2014, vol. 25, pp. 77–85. https://doi.org/10.1016/J.SBI.2014.01.007
11. Padutov V. E., Baranov O. Yu., Voropaev E. V. Méthodes d’analyse génétique moléculaire. Minsk, Yunipol Publ., 2007. 176 p. (in Russian).
12. Kashif M. Terhonen E., Hamberg L., Piri T., Haapanen M., Pöykkö S., Vainio E. J., Hantula J. PaLAR3 genotype variability for enhanced resistance against Heterobasidion parviporum in Norway spruce: Insights into allelic frequencies, disease response, and the role of mycoviruses. Biological Control, 2024, vol. 198, art. 105633. https://doi.org/10.1016/j.biocontrol.2024.105633
13. Durodola B., Hanström N., Blumenstein K., Haapanen M., Hantula J., Kashif M., Piri T., Terhonen E. Leucoanthocyanidin Reductase 3 (PaLAR3) Locus in Norway Spruce (Picea abies) and Its Link to Resistance Against Heterobasidion parviporum. Forest Pathology, 2024, vol. 54, no. 5. pp. e12889. https://doi:10.1111/efp.12889
14. Edesi J., Tikkinen M., Elfstrand M., Olson Å., Varis S., Egertsdotter U., Aronen T. Root Rot Resistance Locus PaLAR3 Is Delivered by Somatic Embryogenesis (SE) Pipeline in Norway Spruce (Picea abies (L.) Karst.). Forests, 2021, vol. 12, no. 2, p. 193. https://doi.org/10.3390/f12020193
15. Terhonen E., Kashif M., Piri T., Haapanen M., Hantula J. Allele PaLAR3B in root rot resistance locus does not influence the infection pressure by Heterobasidion parviporum through root contacts. Forest Pathology, 2022, vol. 52, no. 5, аrt. e12769. https://doi.org/10.1111/efp.12769


























