Microsatellite analysis of embryogenic lines of the Norway spruce Picea abies (L.) Karst.
https://doi.org/10.29235/1029-8940-2025-70-4-271-283
Abstract
The method of somatic embryogenesis could be used for industrial production of clonal planting material. For this reason special attention is paid to the studies of various genetic disorders that arise in vitro because of their possibility to be inherited by the vegetative offsprings. In our investigation the levels of somaclonal variability and mixoploidy in callus colonies and plantlets of six embryogenic lines of Norway spruce (Picea abies (L.) Karst.) were studied. ½ LM nutrient medium supplemented with sucrose and glutamine was used at different stages of plant tissues and plantlets in vitro cultivation. Growth regulators 2,4-D, 6-BAP, ABA, IMC and activated carbon were added to nutrient media if necessary. Microsatellite analysis of samples was carried out using five EST-SSR markers Pa28, Pa33, Pa56, Pa47, Pa52. It was shown that in samples of three of the six embryogenic lines, more than two (three or four) allelic variants were identified at the Pa28 locus. In a number of cases, the tissues studied have pronounced signs of mixoploidy. Appropriate microsatellite analysis of samples collected from 33 middle-aged trees of Norway spruce from naturally formed forest stand was additionally carried out in order to compare the results with the data obtained earlier. Only two plants showed the presence of triploid cells, indicating a significantly lower level of genomic or chromosomal aberrations than observed in in vitro cultures.
About the Authors
V. E. PadutovBelarus
Vladimir E. Padutov – Corresponding Member, D. Sc. (Biol.), Professor, Head of the Department, Forest Institute of the National Academy of Sciences of Belarus.
71, Proletarskaya Str., 246050, Gomel
L. M. Mozharovskaya
Belarus
Ludmila V. Mozharovskaya – Ph. D. (Biol.), Associate Professor, Senior Researcher, Forest Institute of the National Academy of Sciences of Belarus.
71, Proletarskaya Str., 246050, Gomel
D. V. Kulagin
Belarus
Dmitriy V. Kulagin – Researcher, Forest Institute of the National Academy of Sciences of Belarus.
71, Proletarskaya Str., 246050, Gomel
A. V. Padutov
Belarus
Alexandr V. Padutov – Researcher, Forest Institute of the National Academy of Sciences of Belarus.
71, Proletarskaya Str., 246050, Gomel
M. P. Kusenkova
Belarus
Marina P. Kusenkova – Researcher, Forest Institute of the National Academy of Sciences of Belarus.
71, Proletarskaya Str., 246050, Gomel
References
1. Kozubov G. M., Muratova E. N. Modern gymnosperms: (morphological and systematic review and karyology). Leningrad, Nauka Publ., 1986. 192 p. (in Russian).
2. Nystedt B., Street N. R., Wetterbom A., Zuccolo A., Lin Y.-Ch., Scofield D. G., Vezzi F. [et al]. The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, vol. 497, no. 7451, pp. 579–584. https://doi.org/10.1038/nature12211
3. Cui Y., Zhao J., Gao Y., Zhao R., Zhang J., Kong L. Efficient Multi-Sites Genome Editing and Plant Regeneration via Somatic Embryogenesis in Picea glauca. Frontiers in Plant Science, 2021, vol. 12, art. 751891. https://doi.org/10.3389/fpls.2021.751891
4. Borodina N. A. Polyploidy in the introduction of woody plants. M., Nauka Publ., 1982. 176 p. (in Russian).
5. Matskevich N. V Protection of rare genotypes of forest trees and shrubs. M., Agropromizdat Publ., 1987. 207 p. (in Russian).
6. Ohri D. Polyploidy in Gymnosperms-A Reappraisal. Silvae Genetica, 2021, vol. 70, no. 1, pp. 22–38. https://doi.org/10.2478/sg-2021-0003
7. Winton L. L. Natural polyploidy in juvenile white and black spruce. Minnesota Forestry Notes, 1964, no. 144. 2 p.
8. Kiellander C. L. Polyploidy in Picea abies. Hereditas, 1950. vol. 36, no. 3, pp. 513–516.
9. Tashev A. N., Sedel’nikova T. S., Pimenov A. V. Chromosome number and chromosomal rearrangements in Norway spruce Picea abies (L.) H. Karst. in the forests of the Rila-Rhodope mountain range of Bulgaria. Sibirskii lesnoi zhurnal [Siberian Forest Journal], 2015, no. 5, pp. 77–86 (in Russian).
10. Muratova E. N., Sedel’nikova T. S., Goryachkina O. V., Pimenov A. V. Karyological and Cytogenetic Studies of Coniferous Plants Growing under Extreme Conditions. Contemporary Problems of Ecology, 2023, vol. 16, no. 5, pp. 564–574. https://doi.org/10.1134/S1995425523050074
11. Gulyaeva E. N., Ignatenko R. V., Galibina N. A. Somaclonal variability in conifers in vitro culture. Ekologicheskaya genetika [Ecological Genetics], 2020, vol. 18, no. 3, pp. 301–315 (in Russian).
12. Sarmast M. K., Ghaleh Z. R., Alizadeh M. Somaclonal Variation in Conifers. Somaclonal Variation: Basic and Practical Aspects. Cham, 2024, pp. 123–142. https://doi.org/10.1007/978-3-031-51626-9_7
13. Tretyakova I., Ivanitskaya A., Park M., Voroshilova E., Oreshkova N., Krutovsky K. Megagametophyte in vitro tissue culture of Pinus sibirica and Larix sibirica and somaclonal variation. Proceedings of the 3rd International Conference of the IUFRO Unit 2.09.02 on “Woody plant production integrating genetic and vegetative propagation technologies”, Vitoria-Gasteiz, Spain, 8–12 September 2014. 2015, pp. 45–57. Available at: https://www.iufro.org/media/fileadmin/publications/proceedings-archive/20902-vitoria-gasteiz14-proceedings.pdf (accessed 10.02.2025).
14. Goryachkina O. V., Park M. E., Tretyakova I. N., Badaeva E. D., Muratova E. N. Cytogenetic Stability of Young and Long-Term Embryogenic Cultures of Larix sibirica. Cytologia, 2018, vol. 83, no. 3, pp. 323–329. https://doi.org/10.1508/cytologia.83.323
15. Harvengt L., Trontin J. F., Reymond I., Canlet F., Paques M. Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis. Planta, 2001, vol. 213, no. 5, pp. 828–832. https://doi.org/10.1007/s004250100628
16. Hazubska-Przybyl T., Chmielarz P., Michalak M., Dering M., Bojarczuk K. Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, vol. 113. pp. 303–313. https://doi.org/10.1007/s11240-012-0270-2
17. Fourre J. L., Berger P., Niquet L., Andre P. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theoretical and Applied Genetics, 1997, vol. 94, pp. 159–169. https://doi.org/10.1007/s001220050395
18. Helmersson A., Jansson G., Bozhkov P. V., Von Arnold S. Genetic variation in microsatellite stability of somatic embryo plants of Picea abies: A case study using six unrelated full-sib families. Scandinavian Journal of Forest Research, 2008, vol. 23, no. 1, pp. 2–11. https://doi.org/10.1080/02827580701820043
19. Litvay, J. D., Verma D. C., Johnson M. A. Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Reports, 1985, vol. 4, no. 6, pp. 325–328. https://doi.org/10.1007/bf00269890
20. Kusenkova M. P., Pshibyl-Khazubska T., Kulagin D. V., Konstantinov A. V., Tret’yakova I. N., Pak M. E., Shuklina A. S., Pakhomova A. P., Padutov V. E. Morphogenesis of embryogenic cultures of Norway spruce of Belarusian origin at different stages of cultivation. Problemy lesovedeniya i lesovodstva: sbornik nauchnykh trudov [Problems of forestry and silviculture: collection of scientific papers]. Gomel, 2020, iss. 80. pp. 55–62 (in Russian).
21. Kusenkova M. P. Germination of somatic embryoids of Norway spruce obtained with different duration of cultivation of embryogenic callus on nutrient media for maturation. Problemy lesovedeniya i lesovodstva: sbornik nauchnykh trudov [Problems of forestry and silviculture: collection of scientific papers]. Gomel, 2021, iss. 81, pp. 169–177 (in Russian).
22. Padutov V. E., Baranov O. Yu., Voropaev E. V. Methods of molecular genetic analysis. Minsk: Yunipol Publ., 2007. 176 p. (in Russian).
23. Fluch S., Burg A., Kopecky D., Homolka A., Spiess N., Vendramin G. G. Characterization of variable EST-SSR markers for Norway spruce (Picea abies L.). BMC Research notes, 2011, vol. 4, art. 401. https://doi.org/10.1186/1756-0500-4-401
24. Grodetskaya T. A., Baranov O. Yu., Rzhevskii S. G., Fedulova T. P., Shabanova E. A., Konstantinov A. V., Mashkina O. S. Molecular genetic analysis of in vitro propagated clones of Populus alba L. and Populus tremula L. using microsatellite markers. Lesotekhnicheskii zhurnal [Forestry journal], 2021, vol. 11, no. 3, pp. 16–30 (in Russian).
25. Baranov O. Yu., Balyutskas V. Use of molecular genetic markers for ploidy analysis of aspen and birch. Problemy lesovedeniya i lesovodstva: sbornik nauchnykh trudov [Problems of forestry and silviculture: collection of scientific papers]. Gomel, 2009, iss. 69, pp. 129–135 (in Russian).
26. Feng B., Yi S. V., Zhang M., Zhou X. Development of novel EST-SSR markers for ploidy identification based on de novo transcriptome assembly for Misgurnus anguillicaudatus. PloS one, 2018, vol. 13, no. 4, p. e0195829. https://doi.org/10.1371/journal.pone.0195829
27. Betekhtin A., Rojek M., Jaskowiak J., Milewska-Hendel A., Kwasniewska J., Kostyukova Y., Kurczynska E., Rumyantseva N., Hasterok R. Nuclear genome stability in long-term cultivated callus lines of Fagopyrum tataricum (L.) Gaertn. PLoS One, 2017, vol. 12, no. 3, p. e0173537. https://doi.org/10.1371/journal.pone.0173537
28. Duta-Cornescu G., Constantin N., Pojoga D.-M., Nicuta D., Simon-Gruita A. Somaclonal Variation – Advantage or Disadvantage in Micropropagation of the Medicinal Plants. International Journal of Molecular Sciences, 2023, vol. 24, no. 1, art. 838. https://doi.org/10.3390/ijms24010838
29. Shestibratov K. A., Lebedev V. G., Miroshnikov A. I. Forest biotechnology: methods, technologies and perspectives. Biotechnology in Russia, 2008, no. 5, pp. 1–34 (in Russian).
30. Kozyrenko M. M., Artyukhova E. V., Boltenkov E. V., Lauve L. S. Somaclonal variability of Iris pseudacorus L. according to RAPD and cytogenetic analysis. Biotechnology in Russia, 2004, no. 2, pp. 11–22 (in Russian).
31. Shinde D., Lai Y. L., Sun F. Z., Arnheim N. Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Research, 2003, vol. 31, no. 3, pp. 974–980. https://doi.org/10.1093/nar/gkg178
32. Galinskaya T. V., Shchepetov D. M., Lysenkov S. N. Prejudices against microsatellite studies and how to resist them. Russian Journal of Genetics, 2019, vol. 55, no. 6, pp. 657–671 (in Russian). https://doi.org/10.1134/S1022795419060048
33. Kristt D., Israeli M., Narinski R., Or H., Yaniv I., Stein J., Klein T. Hematopoietic chimerism monitoring based on STRs: quantitative platform performance on sequential samples. Journal of Biomolecular Techniques, 2005, no. 16, no. 4, pp. 378–389.
34. Sedel’nikova T. S. Variability of chromosome number as a factor of microevolution and adaptation of conifers. Faktori eksperimental’noї evolyutsії organіzmіv [Factors of experimental evolution of organisms], 2016, vol. 18, pp. 24–28 (in Russian).
35. Knyazeva S. G., Muratova E. N. Karyological review of conifers based on the chromosome number database. Khvoinye boreal’noi zony [Conifers of the boreal zone], 2010, vol. 27, no. 1–2, pp. 97–101 (in Russian).
36. Goryachkina O. V., Sizykh O. A. Cytogenetic reactions of coniferous plants in anthropogenically disturbed areas of Krasnoyarsk and its environs. Khvoinye boreal’noi zony [Conifers of the boreal zone], 2012, vol. 30, no. 1–2, pp. 46–51 (in Russian).
37. Kunakh V. A. Genomic variability of plant somatic cells. Biopolimery i kletka [Biopolymers and the cell], 1995, vol. 11, no. 6, p. 5 (in Russian).
38. Kumar P. S., Mathur V. L. Chromosomal instability in callus culture of Pisum sativum. Plant Cell, Tissue and Organ Culture, 2004, vol. 78, no. 3, pp. 267–271. https://doi.org/10.1023/B:TICU.0000025669.11442.3e
39. Mishiba K.-I., Tawada K.-I., Mii M. Ploidy distribution in the explant tissue and the calluses induced during the initial stage of internode segment culture of Asparagus officinalis L. In Vitro Cellular & Developmental Biology – Plant, 2006. vol. 42, no. 1, pp. 83–88. https://doi.org/10.1079/IVP2005724
40. Shmakov V. N., Konstantinov Yu. M. Somatic embryogenesis of representatives of the genus Larix: status and prospects. Vavilovskii zhurnal genetiki i selektsii [Vavilov Journal of Genetics and Breeding], 2020, vol. 24, no. 6, pp. 575–588 (in Russian).
41. Tret’yakova I. N., Pak M. E., Ivanitskaya A. S., Oreshkova N. V. Features of somatic embryogenesis of long-term proliferating embryogenic cell lines of Larix sibirica in vitro. Fiziologiya rastenii [Plant Physiology], 2016, vol. 63, no. 6, pp. 812–822 (in Russian).



























