Estimatiom of the effect of plasma and radio wave treatment of seeds on the content of isoflavones in soybean leaves (Glycine max L.)
https://doi.org/10.29235/1029-8940-2021-66-4-402-411
Abstract
The effect of treatment of seeds with a high-frequency (HF) electromagnetic field and HF plasma on the qualitative and quantitative composition of isoflavones in the leaves of soybeans in the phases of branching, flowering and seed filling has been studied.
It was found that the treatment of soybean seeds leads to a change in the quantitative content of isoflavone aglycones in the leaves, but does not affect their qualitative composition. The maximum content of daidzein was found in the flowering phase when the seeds were treated with an electromagnetic field, genistein ‒ in the branching phase, while a particularly high content of this component was found in plants whose seeds were treated with plasma.
About the Authors
N. A. KopylovaBelarus
Natalia A. Kopylova – Ph. D. (Biol.), Senior Researcher
27, Akademicheskaya Str., 220072, Minsk
N. A. Laman
Belarus
Nikolai A. Laman – Academician, D. Sc. (Biol.), Professor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk
H. L. Nedved
Belarus
Helena L. Nedved – Ph. D. (Biol.), Senior Researcher.
27, Akademicheskaya Str., 220072, Minsk
J. N. Kalatskaya
Belarus
Joanna N. Kalatskaya – Ph. D. (Biol.), Leading Researcher
27, Akademicheskaya Str., 220072, Minsk
I. I. Filatova
Belarus
Irina I. Filatova – Ph. D. (Phys. and Math.), Leading Researcher
68, Nezavisimosti Ave., 220072, Minsk
V. A. Lyushkevich
Belarus
Veronika A. Lyushkevich – Researcher
68, Nezavisimosti Ave., 220072, Minsk
S. V. Goncharik
Belarus
Svetlana V. Goncharik – Researcher
68, Nezavisimosti Ave., 220072, Minsk
References
1. Casini M. L., Marelli G., Papaleo E., Ferrari A., D’Ambrosio F., Unfer V. Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled studу. Fertility and Sterility, 2006, vol. 85, no. 4, pp. 972–978. https://doi.org/10.1016/j.fertnstert.2005.09.048
2. Messina M. Insights gained from 20 years of soy research. Journal of Nutrition, 2010, vol. 140, no. 12, pp. 2289S–2295S. https://doi.org/10.3945/jn.110.124107
3. Andres S., Abraham K., Appel K. E., Lampen A. Risks and benefits of dietary isoflavones for cancer. Critical Reviews in Toxicology, 2011, vol. 41, no. 6, pp. 463–506. https://doi.org/10.3109/10408444.2010.541900
4. Wang Q., Ge X., Tian X., Zhang Y., Zhang J., Zhang P. Soy osoflavone: the multipurpose phytochemical (review). Biomedical Reports, 2013, vol. 1, no. 5, pp. 697–701. https://doi.org/10.3892/br.2013.129
5. Davydenko O. G., Goloenko D. V., Rozentsveig V. E. Soybeans for a temperate climate. Minsk, Tekhnalogiya Publ., 2004. 173 p. (in Russian).
6. Petibskaya V. S. Soy: chemical composition and use. Maikop, Poligraf-YuG Publ., 2012. 432 p. (in Russian).
7. Cebulak T., Oszmiański J., Kapusta J., Lachowicz S. Effect of UV-C radiation, ultra-sonication electromagnetic field and microwaves on changes in polyphenolic compounds in chokeberry (Aronia melanocarpa). Molecules, 2017, vol. 22, no. 7, p. 1161. https://doi.org/10.3390/molecules22071161
8. Yu J., Engeseth N. J., Feng H. High intensity ultrasound as an abiotic elicitor – effects on antioxidant capacity and overall quality of romaine. Food and Bioprocess Technology, 2016, vol. 9, no. 2, pp. 262–273. https://doi.org/10.1007/s11947-015-1616-7
9. Shcherbakov A. V., Buskunova G. G., Amineva A. A., Ivanov S. P., Usmanov I. Yu. Variability of secondary metebolites content in Achillea nobilis L. in the South Urals. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Bulletin of the Samara Scientific Center of the Russian Academy of Sciences], 2009, vol. 11, no. 1, pp. 198–204 (in Russian).
10. Bogs J. Identification of the flavonoids from grapevine and their regulation during fruit development. Plant Physiology, 2006, vol. 140, no. 1, pp. 279–291. https://doi.org/10.1104/pp.105.073262
11. Tsyganov A. R., Gordeev Yu. A., Poddubnaya O. V., Kovaleva I. V., Poddubnyi O. A. Study of effeciency of the preseeding irradiation of seeds helium-plasma on growth and flax development. Pochvovedenie i agrokhimiya [Soil science and agrochemistry], 2009, no. 2, pp. 273–281 (in Russian).
12. Lyushkevich V. A., Filatova I. I., Zhukova E. E., Pauzhaite G. Stimulation of the metabolism of medicinal plants using seed treatment with low-temperature plasma and electromagnetic field. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki [Reports of the Belarusian State University of Informatics and Radioelectronics], 2016, no. 7, pp. 188–191 (in Russian).
13. Plasma seed treatment technology and plasma seeds. Available at: http://www.lana-pav.com/plazmennaya-texnologiya-obrabotki-semyan-i-lazmennye-semena.html (accessed 10.01.2020) (in Russian).
14. Filatova I., Azharonok V., Shik A., Antoniuk A., Terletskaya N. fungicidal effects of plasma and radio-wave pretreatments on seeds of grain crops and legumes. Plasma for Bio-Decontamination, Medicine and Food Security. Dordrecht, 2012, pp. 469–479.
15. Voropaeva N. L., Belonozhkina T. G., Karpachev V. V., Naumov E. V., Vasil’ev M. M., Petrov O. F. Innovative environmentally friendly (nano)technology of amaranth cultivation. Ekologicheskii vestnik Severnogo Kavkaza [Ecological bulletin of the North Caucasus], 2015, vol. 11, no. 1, pp. 26–30 (in Russian).
16. Usmanov I. Yu., Nafikov A. V., Prochukhan Yu. A. Medicinal plants: prospects for creating import-substituting industries. Ekonomika i upravlenie [Economics and management], 2000, no. 2, pp. 5–9 (in Russian).
17. Pauzaite G., Malakauskiene A., Nauciene Z., Zukiene R., Filatova I. I., Lyushkevich V., Azarko I., Mildaziene V. Changes in Norway spruce germination and growth induced by pre-sowing seed treatment with cold plasma and electromagnetic field: short-term and long-term effects. Plasma Processes and Polymers, 2018, vol. 15, no. 2, p. 1700068. https://doi.org/10.1002/ppap.201700068
18. Mildaziene V., Pauzaite G., Naucienė Z., Malakauskiene A., Zukiene R., Januskaitiene I., Jakstas V., Ivanauskas I., Filatova I. I., Lyushkevich V. A. Pre-sowing seed treatment with cold plasma and electromagnetic field increases secondary metabolite content in purple coneflower (Echinacea purpurea) leaves. Plasma Processes and Polymers, 2018, vol. 15, no. 2, p. 1700059. https://doi.org/10.1002/ppap.201700059
19. Kováčik J., Klejdus B., Bačkor M., Repčák M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Science, 2007, vol. 172, no. 2, pp. 393–399. https://doi.org/10.1016/j.plantsci.2006.10.001
20. Griesser M., Hoffmann T., Bellido M. L., Rosati C., Fink B., Kurtzer R., Aharoni A., Muñoz-Blanco J., Schwab W. Redirection of flavonoid biosynthesis through the down regulation of an antocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiology, 2008, vol. 146, no. 4, pp. 1528–1539. https://doi.org/10.1104/pp.107.114280
21. Besseau S., Hoffmann L., Geoffroy P., Lapierre C., Pollet B., Legrand M. Flavonoid accumulation in arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell, 2007, vol. 19, no. 1, pp. 148–162. https://doi.org/10.1105/tpc.106.044495
22. Wade H. K., Sohal A. K., Jenkins G. I. Arabidopsis ICX1 is a negative regulator of several pathways regulating flavonoid biosynthesis genes. Plant Physiology, 2003, vol. 131, no. 2, pp. 707–715. https://doi.org/10.1104/pp.012377
23. van der Rest B., Danoun S., Boudet A.-M., Rochange S. F. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. Journal of Experimental Botany, 2006, vol. 57, no. 6, pp. 1399–1411. https://doi.org/10.1093/jxb/erj120
24. Liu J., Hu B., Liu W., Qin W., Wu H., Zhang J. [et al.]. Metabolomic tool to identify soybean [Glycine max (L.) Merrill] germplasts with a high level of shade tolerance at the seedling stage. Scientific Reports, 2017, vol. 7, no. 1, art. 42478. https://doi.org/10.1038/srep42478
25. Lozovaya V. V., Lygin A. V., Zernova O. V., Li S., Hartman G. L., Widholm J. M. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiology and Biochemistry, 2004, vol. 42, no. 7–8, pp. 671–679. https://doi.org/10.1016/j.plaphy.2004.06.007
26. Adesanya S. A., O’Neill M. J., Roberts M. F. Structure-related fungitoxicity of isoflavonoids. Physiological and Molecular Plant Pathology, 1986, vol. 29, no. 1, pp. 95–103. https://doi.org/10.1016/s0048-4059(86)80041-8
27. Tian F., Jia T., Yu B. Physiological regulation of seed soaking with soybean isoflavones on drought tolerance of Glycine max and Glycine soja. Plant Growth Regulation, 2014, vol. 74, no. 3, pp. 229–237. https://doi.org/10.1007/s10725-014-9914-z
28. Wu W., Zhang Q., Zhu Y., Lam H.-M., Cai Z., Guo D. Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance. Journal of Agricultural and Food Chemistry, 2008, vol. 56, no. 23, pp. 11132–11138. https://doi.org/10.1021/jf8024024
29. Kootstra A. Protection from UV-B-induced DNA damage by flavonoids. Plant Molecular Biology, 1994, vol. 26, no. 2, pp. 771–774. https://doi.org/10.1007/bf00013762
30. Aisya S., Gruppe H., Madzora B., Vincken J. P. Modulation of isoflavonoid composition of Rhizopus oryzae elicited soybean (Glycine max) seedlings by light and wounding. Journal of Agricultural and Food Chemistry, 2013, vol. 61, no. 36, pp. 8657–8667. https://doi.org/10.1021/jf4020203
31. Brunetti C., Guidi L., Sebastiani F., Tattini M. Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany, 2015, vol. 119, pp. 54–62. https://doi.org/10.1016/j.envexpbot.2015.04.007
32. Lee C. H. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chemistry, 2005, vol. 90, no. 4, pp. 735–741. https://doi.org/10.1016/j.foodchem.2004.04.034
33. Recor I. R., Dreosti I. E., McInerne J. K. The antioxidant activity of genistein in vitro. Journal of Nutritional Biochemistry, 1995, vol. 6, no. 9, pp. 481–485. https://doi.org/10.1016/0955-2863(95)00076-c
34. Heim K. E., Tagliaferr A. R., Bobilya D. J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 2002, vol. 13, no. 10, pp. 572–584. https://doi.org/10.1016/s0955-2863(02)00208-5
35. Kalatskaya Zh. N., Laman N. A., Filatova I. I., Frolova T. V., Lyushkevich V. A., Chubrik N. I., Goncharik S. V. Influence of plasma-radio wave treatment of corn seeds and their subsequent storage in unfavorable conditions on the physiological and biochemical characteristics of seedlings. Vestsi Natsyyanalʼnai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2018, vol. 63, no. 1, pp. 7–19 (in Russian).
36. Phommalth S., Jeong Y.-S., Kim Y.-H., Dhakal K. H., Hwang Y.-H. Effects of light treatment on isoflavone content of germinated soybean seeds. Journal of Agricultural and Food Chemistry, 2013, vol. 56, pp. 10123–10128. https://doi.org/10.1021/jf802118g
37. Ke D., Saltveit M. E. Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce. Plant Physiology, 1988, vol. 88, no. 4, pp. 1136–1140. ttps://doi.org/10.1104/pp.88.4.1136