Computer simulation of aquaporin4-dependent water transfer across the hematoencephalic barrier
https://doi.org/10.29235/1029-8940-2019-64-2-190-197
Abstract
A computational simulation of water transfer across the blood-brain barrier (BBB) has been carried out. In the developed model, AQP4 plays a kinetically limiting role in water transfer across the BBB. The effects of the AQP4 specific density changes and its polarized distribution have been studied in respect to the volumetric water transfer. It has been demonstrated that AQP4 density and polarization within the glial membranes enveloping the capillary can affect the volumetric flow and the sign of the water flux. The results might be used for elucidation of the pathogenic mechanism of cerebral edema and in development of the ways of pharmacological correction of the cerebral water metabolism disorders.
About the Authors
K. V. BasiakovaBelarus
Katerina V. Basiakova– Researcher.
24, F. Skorina Str., 220114, Minsk.
E. P. Titovets
Belarus
Ernst P. Titovets– D. Sc. (Biol.), Professor, Chief researcher.
24, F. Skorina Str., 220114, Minsk.
References
1. Lei Y., Han H., Yuan F., Javeed A., Zhao Y. The brain interstitial system: Anatomy, modeling, in vivomeasurement, and applications. Progress in Neurobiology, 2017, vol. 157, pp. 230–246. https://doi.org/10.1016/j.pneurobio.2015.12.007
2. Simon M. J., Iliff J. J. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 2016, vol. 1862, no. 3, pp. 442–451. https://doi.org/10.1016/j.bbadis.2015.10.014
3. Orešković D., Klarica M. A new look at cerebrospinal fluid movement. Fluids and Barriers of the CNS, 2014, vol. 11, no. 1, art. 16. https://doi.org/10.1186/2045-8118-11-16
4. Titovets E. P. Aquaporins of man and animals: fundamental and clinical aspects. Minsk, Belorusskaya Nauka Publ., 2007. 223 p. (in Russian).
5. Abbott N. J., Pizzo M. E., Preston J. E., Janigro D., Thorne R. G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphaticʼ system? Acta Neuropathologica, 2018, vol. 135, no. 3, pp. 387–407. https://doi.org/10.1007/s00401- 018-1812- 4
6. Abbott N. J., Rönnbäck L., Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 2006, vol. 7, no. 1, pp. 41–53. https://doi.org/10.1038/nrn1824
7. Haj-Yasein N. N., Vindedal G. F., Eilert-Olsen M., Gundersen G. A., Skare O., Laake P. [et al.]. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proceedings of the National Academy of Sciences, 2011, vol. 108, no. 43, pp. 17815–17820. https://doi.org/10.1073/pnas.1110655108
8. Verkman A. S. Aquaporins in clinical medicine. Annual Review of Medicine, 2012, vol. 63, no. 1, pp. 303–316. https://doi.org/10.1146/annurev-med-043010-193843
9. Jung J. S., Bhat R. V., Preston G. M., Guggino W. B., Baraban J. M., Agre P. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proceedings of the National Academy of Sciences,1994, vol. 91, no. 26, pp. 13052–13056. https://doi.org/10.1073/pnas.91.26.13052
10. Neely J. D., Christensen B. M., Nielsen S., Agre P. Heterotetrameric composition of aquaporin-4 water channels. Biochemistry, 1999, vol. 38, no. 34, pp. 11156–11163. https://doi.org/10.1021/bi990941s
11. Dermietzel R. Visualization by freeze-facturing of regular structures in glial cell membranes. Naturwissenschaften, 1973, vol. 60, no. 4, p. 208. https://doi.org/10.1007/bf00599446
12. Smith A. J., Jin B.-J., Ratelade J., Verkman A. S. Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes. Journal of Cell Biology, 2014, vol. 204, no. 4, pp. 559–573. https://doi.org/10.1083/jcb.201308118
13. Saadoun S., Papadopoulos M. C., Watanabe H., Yan D., Manley G. T., Verkman A. S. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. Journal of Cell Science, 2005, vol. 118, iss. 24, pp. 5691–5698. https://doi.org/10.1242/jcs.02680
14. Crane J. M., van Hoek A. N., Skach W. R., Verkman A. S. Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking. Molecular Biology of the Cell, 2008, vol. 19, no. 8, pp. 3369–3378. https://doi.org/10.1091/mbc.e08-03-0322
15. Verkman A. S., Ratelade J., Rossi A., Zhang H., Tradtrantip L. Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica. Acta Pharmacologica Sinica, 2011, vol. 32, no. 6, pp. 702–710. https://doi.org/10.1038/aps.2011.27
16. Nagelhus E. A., Ottersen O. P. Physiological roles of aquaporin-4 in brain. Physiological Reviews, 2013, vol. 93, no. 4, pp. 1543–1562. https://doi.org/10.1152/physrev.00011.2013
17. Nagelhus E. A., Mathiisen T. M., Ottersen O. P. Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience, 2004, vol. 129, no. 4, pp. 905–913. https://doi.org/10.1016/j.neuroscience.2004.08.053
18. Yukutake Y., Hirano Y., Suematsu M., Yasui M. Rapid and reversible inhibition of aquaporin-4 by zinc. Biochemistry,2009, vol. 48, no. 51, pp. 12059–12061. https://doi.org/10.1021/bi901762y
19. Savage D. F., Stroud R. M. Structural basis of aquaporin inhibition by mercury. Journal of Molecular Biology, 2007, vol. 368, no. 3, pp. 607–617. https://doi.org/10.1016/j.jmb.2007.02.070
20. Ding T., Ma Y., Li W., Liu X., Ying G., Fu L., Gu F. Role of aquaporin-4 in the regulation of migration and invasion of human glioma cells. International Journal of Oncology, 2011, vol. 38, no. 6, pp. 1521–1531. https://doi.org/10.3892/ijo.2011.983
21. Wang D., Owler B. K. Expression of AQP1 and AQP4 in paediatric brain tumours. Journal of Clinical Neuroscience,2011, vol. 18, no. 1, pp. 122–127. https://doi.org/10.1016/j.jocn.2010.07.115
22. Yang L., Wang X., Zhen S., Zhang S., Kang D., Lin Z. Aquaporin-4 upregulated expression in glioma tissue is a reaction to glioma-associated edema induced by vascular endothelial growth factor. Oncology Reports, 2012, vol. 28, no. 5, pp. 1633–1638. https://doi.org/10.3892/or.2012.1973
23. Friedman M. Principles and models of biological transport. Berlin, Heiderberg, Springer, 1986. 260 p.
24. Titovets E. Novel computational model of the brain water metabolism: introducing an interdisciplinary approach. Journal of Computational Systems Biology, 2018, vol. 2, no. 1, art. 103.
25. Zhu F., Tajkhorshid E., Schulten K. Theory and simulation of water permeation in aquaporin-1. Biophysical Journal, 2005, vol. 86, no. 1, pp. 50–57. https://doi.org/10.1016/s0006-3495(04)74082-5
26. Solenov E., Solenov H., Manley G. T., Verkman A. S. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. American Journal of PhysiologyCell Physiology, 2004, vol. 286, no. 2, pp. C426–C432. https://doi.org/10.1152/ajpcell.00298.2003
27. Tradtrantip L., Jin B. J., Yao X., Anderson M. O., Verkman A. S. Aquaporin-targeted therapeutics: state-of-the-field. Advances in Experimental Medicine and Biology, 2017, vol. 969, pp. 239–250. https://doi.org/10.1007/978-94-024-1057-0_16
28. Verkman A. S., Smith A. J., Phuan P. W., Tradtrantip L., Anderson M. O. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opinion on Therapeutic Targets, 2017, vol. 21, no. 12, pp. 1161–1170. https://doi.org/10.1080/14728222.2017.1398236