Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

ESTIMATION OF EST-SSR AND SRAP-RGA MARKERS FOR GENOTYPING YELLOW LUPIN (LUPINUS LUTEUS L.)

https://doi.org/10.29235/1029-8940-2018-63-3-298-306

Abstract

14 SRAP-RGA primer combinations and 8 EST-SSR markers were tested on the collection of 10 different yellow lupine samples. The most efficient primers for intravarietal differentiation of yellow lupine were distinguished according their parameters. Reliable correlations were determined between the presence of EST-SSR fragments and some characteristics of productivity in hybrid (F2 ) yellow lupine populations.

 

About the Authors

E. N. Sysoliatin
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk
Belarus
Junior researcher


N. V. Anisimova
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Biol.), Senior researcher


O. G. Babak
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Biol.), Associate Professor, Leading researcher


V. S. Anokhina
Belarusian State University
Belarus
Ph. D. (Biol.), Associate Professor


I. Y. Romanchuk
Belarusian State University
Belarus
Researcher


A. V. Kilchevsky
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk
Belarus
Academician, D. Sc. (Biol.), Professor, Head of the Laboratory


References

1. Privalov F. I., Shor V. Ch. Prospects of cultivation, selection and seed production of lupine in Belarus. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya agrarnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Series of Agrarian Sciences, 2015, iss. 2, pp. 47–53 (in Russian).

2. Gonzalez L. B. P., Straub S. C. K., Doyle J. J., Ortega P. E. M., Garrido H. E. S., Butler I. J. M. Development of microsatellite markers in Lupinus luteus (Fabaceae) and cross-species amplification in other lupine species. American Journal of Botany, 2010, vol. 97, no. 8, pp. e72–e74. https://doi.org/10.3732/ajb.1000170

3. Fu N., Wang P.-Y., Liu X.-D., Shen H.-L. Use of EST-SSR markers for evaluating genetic diversity and fingerprinting Celery (Apium graveolens L.) cultivars. Molecules, 2014, vol. 19, no. 2. pp. 1939–1955. https://doi.org/10.3390/molecules19021939

4. Ramu P., Billot C., Rami J.-F., Senthilvel S., Upadhyaya H. D., Reddy L. A., Hash C. T. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theoretical and Applied Genetics, 2013, vol. 126, no. 8, pp. 2051–2064. https://doi.org/10.1007/s00122-013-2117-6

5. Zhang G., Xu S., Mao W., Hu Q., Gong Y. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. Journal of Zheijang University. SCIENCE B. Biomedicine and Biotechnology, 2013, vol. 14, no. 4, pp. 279–288. https://doi.org/10.1631/jzus.B1200243

6. Jena S. N., Srivastava A., Rai K. M., Ranjan A., Singh S. K., Nisar T., Srivastava M., Bag S. K., Mantri S., Asif M. H., Yadav H. K., Tuli R., Sawant S. V. Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.). Theoretical and Applied Genetics, 2012, vol. 124, no. 3, pp. 565–576. https://doi.org/10.1007/s00122-011-1729-y

7. Hu J., Wang L., Li J. Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biologia Plantarum, 2011, vol. 55, no. 3, pp. 577–580. https://doi.org/10.1007/s10535-011-0129-0

8. Kong Q., Zhang G., Chen W., Zhang Z., Zou X. Identification and development of polymorphic EST-SSR markers by sequence alignment in pepper Capsicum annuum (Solanaceae). American Journal of Botany, 2012, vol. 99, no. 2, pp. e59–e61. https://doi.org/10.3732/ajb.1100347

9. Wen M., Wang H., Xia Z., Zou M., Cheng Lu C., Wang W. Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Research Notes, 2010, vol. 42, no. 3. 8 p. https://doi.org/10.1186/1756-0500-3-42

10. Parra-González L. B., Aravena-Abarzúa G. A., Navarro-Navarro C. S., Udall J., Maughan J., Peterson L. M., SalvoGarrido H. E., Maureira-Butler I. J. Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics, 2012, vol. 13, no. 1, p. 425. https://doi.org/10.1186/1471-2164-13-425

11. Li D. The Ncm-1 gene for resistance to Cucumber mosaic virus in yellow lupin (Lupinus luteus): molecular studies and marker development. Ph. D. Thesis. Perth, 2012. 201 p.

12. You M., Boersma J. G., Buirchell B. J., Sweetingham M. W., Siddique K. H., Yang H. A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cellular and Molecular Biology Letters, 2005, vol. 10, no. 1, pp. 123–134.

13. Li G., Quiros C.F. Sequence-related amplifed polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, vol. 103, N 2–3, pp. 455–461. https://doi.org/10.1007/s001220100570

14. Mutlu N., Boyaci F. H., Göçmen M., Abak K. Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theoretical and Applied Genetics, 2008, vol. 117, no. 8, pp. 1303–1312. https://doi.org/10.1007/s00122-008-0864-6

15. Sysolyatin E. N., Anisimova N. V., Babak O. G., Kil’chevskii A. V. Estimation of SRAP-RGA PCR method efficiency for genotyping narrow-leaved lupin. Molekulyarnaya i prikladnaya genetika: sbornik nauchnykh trudov [Molecular and applied genetics: a collection of scientific papers]. Minsk, 2016, vol. 21, pp. 46–52 (in Russian).

16. Ma J. X., Lu X. S., Wang T. M. Genetic diversity of wild Medicago sativa by sequence-related amplified polymorphism markers in Xingjiang region, China. Pakistan Journal of Botany, 2013, vol. 45, no. 6, pp. 2043–2050.

17. Chesnokov Yu. V., Artem’eva A. M. Assessment of the measure of information polymorphism of genetic diversity. Sel’skokhozyaistvennaya biologiya = Agricultural biology, 2015, vol. 50, no. 5, pp. 571–578 (in Russian).

18. Urbanovich O. Yu., Hatskevich A. A., Kozlovskaya Z. A., Kartel N. A. Molecular methods of pear varieties certification. Molekulyarnaya i prikladnaya genetika: sbornik nauchnykh trudov [Molecular and applied genetics: a collection of scientific papers]. Minsk, 2009, vol. 9, pp. 160–166 (in Russian).

19. Roldàn-Ruiz I., Dendauw J., van Bockstaele E., Depicker A., de Loose M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 2000, vol. 6, no. 2, pp. 125–134. https://doi.org/10.1023/A:1009680614564

20. Seyit A. K., Erdogan E. H., Emine P. Comparison of effectiveness of ISSR and RAPD markers in genetic characterization of seized marijuana (Cannabis sativa L.) in Turkey. African Journal of Agricultural Research, 2012, vol. 5, no. 21, pp. 2925–2933.

21. Perrier X., Jacquemoud-Collet J. P. DARwin software. 2006. Available at: http://darwin.cirad.fr/ (accessed: 13.02.2018).

22. Hildebrand C. E., Torney D. C., Wagner R. P. Informativeness of polymorphic DNA markers. Los Alamos Science, 1992, no. 20, pp. 100–102.


Review

Views: 602


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)