Influence of chitosan and hydroxycinnamic acids conjugates and nanoparticles on the growth of barley seedlings and proline contents under saline stress
https://doi.org/10.29235/1029-8940-2022-67-3-263-273
Abstract
The effect of seed treatment with various materials of chitosan and hydroxycinnamic acids on the growth of barley seedlings was evaluated. It was shown that chitosan-hydroxycinnamic acid conjugates and nanoparticles had no negative effect on the initial stages of the growth of barley seedlings. Adaptation of seedlings after 24 h exposure to 4 % NaCl in the samples of conjugates of 30 kDa chitosan with caffeic and ferulic acids was more effective. There was a decrease in proline contents and restoration of the growth activity under post-stress conditions.
About the Authors
K. M. HerasimovichBelarus
Kanstantsin M. Herasimovich – Junior Researcher
27, Akademicheskaya Str., 2200072, Minsk
K. I. Rybinskaya
Belarus
Katsiaryna I. Rybinskaya – Junior Researcher
27, Akademicheskaya Str., 2200072, Minsk
I. A. Ovchinnikov
Belarus
Igor A. Ovchinnikov – Junior Researche
27, Akademicheskaya Str., 2200072, Minsk
H. L. Nedved
Belarus
Helen L. Nedved – Ph. D. (Biol.), Senior Researcher
27, Akademicheskaya Str., 2200072, Minsk
J. N. Kalatskaja
Belarus
Joanna N. Kalatskaja – Ph. D. (Biol.), Leading Researcher
27, Akademicheskaya Str., 2200072, Minsk
K. S. Hileuskaya
Belarus
Kseniya S. Hileuskaya – Ph. D. (Chem.), Associate Professor, Leading Researcher
36, F. Skоryna Str., 220141, Minsk
V. V. Nikalaichuk
Belarus
Viktoria V. Nikalaichuk – Junior Researcher
36, F. Skоryna Str., 220141, Minsk
N. A. Laman
Belarus
Nikolai A. Laman – Academiсian, D. Sc. (Biol.), Professor, Head of the Laboratory
27, Akademicheskaya Str., 2200072, Minsk
References
1. Varlamov V. P., Il’ina A. V., Shagdarova B. Ts, Lun̓kov A. P., Mysyakina I. S. Chitin/chitosan and its derivatives: fundamental and applied aspects. Uspekhi biologicheskoi khimii [Advances in biological chemistry], 2020, vol. 60, pp. 317–368 (in Russian).
2. Woranuch S., Yoksan R. Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydrate Polymers, 2013, vol. 96, no. 2, рр. 495–502. https://doi.org/10.1016/j.carbpol.2013.04.006
3. Liu J., Lu J.-F., Kan J., Tang Y. Q., Jin C.-H. Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan. International Journal of Biological Macromolecules, 2013, vol. 62, pp. 85–93. https://doi.org/10.1016/j.ijbiomac.2013.08.040
4. Eom T.-K., Senevirathne M., Kim S.-K. Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. Environmental Toxicology and Pharmacology, 2012, vol. 34, no. 2, pp. 519–527. https://doi.org/10.1016/j.etap.2012.05.004
5. Nedved’ E. L., Kalatskaya Zh. N., Ovchinnikov I. A., Rybinskaya E. I., Kraskovskii A. N., Nikolaichuk V. V., Gilevskaya K. S., Kulikovskaya V. I., Agabekov V. E., Laman N. A. Growth parameters and antioxidant activity in cucumber seedlings with application of chitosan and hydroxycinnamic acids conjugates under salt stress. Prikladnaya biokhimiya i mik robiologiya [Applied biochemistry and microbiology], 2022, vol. 58, no. 1, pp. 74–82 (in Russian).
6. Kraskouski A. N., Nikalaichuk V. V., Kulikouskaya V. I., Hileuskaya K. S., Kalatskaja J. N., Nedved H. L., Laman N. A., Agabekov V. E. Synthesis and properties of hydrogel particles based on chitosan-ferulic acid conjugates. Soft Materials, 2021, vol. 19, no. 4, pp. 495–502. https://doi.org/10.1080/1539445Х.2021.1877726
7. Shikhaleeva G. N., Budnyak A. K., Shikhaleev I. I., Ivashchenko O. L. Modified method for the determination of proline in plant objects. Vіsnik Kharkіvs’kogo natsіonal’nogo unіversitetu іmenі V. N. Karazіna. Serіya “Bіologіya” = The Journal of V. N. Karazin Kharkiv National University. Series “Biology”, 2014, vol. 21, no. 1112, pp. 168–172 (in Russian).
8. Kraskouski A. N., Nikalaichuk V. V., Kulikouskaya V. I., Hileuskaya K. S., Kalatskaja J. N., Nedved E. L., Laman N. A., Agabekov V. E. Preparation and properties of hydrogel microparticles based on chitosan. Theoretical and Experimental Chemistry, 2020, vol. 56, no. 4, pp. 243–252. https://doi.org/10.1007/s11237-020-09655-1
9. Grantz S. A. Primer of biostatistics. 7th ed. New York, McGraw-Hill, 2011. 320 p.
10. Lisar S. Y. S., Motafakkerazad R., Hossain M. M., Rahman I. M. M. Water stress in plants: Causes, effects and responses. Water Stress, 2012, vol. 1, pp. 1–14. https://doi.org/10.5772/39363
11. Zeng D., Luo X. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open Journal of Soil Science, 2012, vol. 2, no. 3, pp. 282–288. https://doi.org/10.4236/ojss.2012.23034
12. Guan Y.-J., Hu J., Wang X.-J., Shao C.-X. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 2009, vol. 10, no. 6, pp. 427‒433. https://doi.org/10.1631/jzus.B0820373
13. Martínez-González L., Yanelis R. G., Alejandro F. R., Miriam N. V. Effect of seed treatment with chitosan on the growth of rice (Oryza sativa L.) seedlings cv. inca lp-5 in saline medium. Cultivos Tropicales, 2015, vol. 36, no. 1, pp. 136‒142.
14. Mahdavi B., Rahimi A. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasian Journal of Biosciences, 2013, vol. 7, pp. 69–76 https://doi.org/10.5772/39363
15. Qutitadamo F., de Simone V., Beleggia R., Trono D. Chisan-induced activation of the antioxidant defense system counteracts the adverse effects of salinity in durum wheat. Plants, 2021, vol. 10, art. 1365 https://doi.org/10.3390/plants10071365
16. Mansour M. M. F., Ali E. F. Evaluation of proline functions in saline conditions. Photochemistry, 2017, vol. 140, pp. 52–68 https://doi.org/10.1016/j.phytochem.2017.04.016
17. Kong-Ngem K., Bunnag S., Theerakulpisut P. Proline, hydrogen peroxide, membrane stability and antioxidant enzyme activity as potential indicators for salt tolerance in rice (Oryza sativa L.). International Journal of Botany, 2012, vol. 8, no. 2, pp. 54–65. https://doi.org/10.3923/ijb.2012.54.65
18. Ma L., Li Y., Yu C., Wang Y., Li X., Li N., Chen Q., Bu N. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma, 2012, vol. 249, no. 2, pp. 393–399. https://doi.org/10.1007/s00709-011-0290-5
19. LiQiang, G. Effects of chitosan on physiological characteristics of tomato seedlings under salt stress. Agricultural Science and TechnologyHunan, 2012, vol. 13, no. 3, pp. 551–553.
20. Mahdavi B. S. A., Modarres Sanavy M., Aghaalikhani M., Sharifi M. Chitosan improves osmotic potential tolerance in safflower (Carthamus tinctorius L.) seedlings. Journal of Crop Improvement, 2011, vol. 25, no. 6, pp. 728–741. https://doi.org/10.1080/15427528.2011.606354
21. Shams Peykani L., Farzami Sepehr M. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Iranian Journal of Plant Physiology, 2018, vol. 9, no. 1, pp. 2661–2670.