Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Construction of Escherichia coli strain producing CpG- enriched recombinant plasmid

Abstract

As a result of current work the plasmid pCpG-KH11 carrying 104 copies of CpG motif GTCGTT has been constructed. The cloned motif is considered to be the most effective in stimulation of the human immune system. The constructed plasmid carries the greatest amount of CpG-motifs among the well-known analogs. Using methods of genetic engineering E. coli CpG-KH11 strain has been obtained. The strain is potent in pCpG-KH11 production and makes it possible to produce about 7.7 mg of target plasmid DNA per 1 L of culture broth.

About the Authors

A. S. Shchokolova
Institute of Microbiology, National Academy of Sciences of Belarus
Belarus


S. V. Kvach
Institute of Microbiology, National Academy of Sciences of Belarus
Belarus


A. I. Zinchenko
Institute of Microbiology, National Academy of Sciences of Belarus
Belarus


References

1. Murad Y. M., Clay T. M. // BioDrugs. 2009. Vol. 23, N 6. P. 361-375.

2. Goldfarb Y., Levi B., Sorski L. et al. // Brain. Behav. Immun. 2011. Vol. 25. P. 67-76.

3. Gupta G. K., Agrawal D. K. // Biodrugs. 2010. Vol. 24. P. 225-235.

4. Vacchelli E., Eggermont A., Sautes-Fridman C. et al. // Oncoimmunol. 2013. Vol. 2, N 8: e25238.

5. Stier S., Maletzki C., Klier U. // Clin. Develop. Immunol. 2013. Vol. 2013.: ID 271246.

6. Steinhagen F., Kinjo T., Bode C., Klinman D. M. // Vaccine. 2011. Vol. 29, N 17. P. 3341-3355.

7. Rappuoli R., Mandl C. W, Black S., De Gregorio E. // Nat. Rev. Immunol. 2011. Vol. 11, N 12. P. 865-872.

8. Krieg A. M. // Nucleic Acid Ther. 2012. Vol. 22, N 2. P. 77-89.

9. Zhao Q., Matson S., Herrera C. J. et al. // Antisense Res. Dev. 1993. Vol. 3, N 1. P. 53-66.

10. Vollmer J., Krieg A. M. // Adv. Drug Deliv. Rev. 2009. Vol. 61, N 3. P. 195-204.

11. Brown D. A., Kang S. H, Gryaznov S. M. et al. // J. Biol. Chem. 1994. Vol. 269. P. 26801-26805.

12. Zhang A., Jin H., Zhang F. et al. // DNA Cell Biol. 2005. Vol. 24, N 5. P. 292-298.

13. Chen Z., Cao J., Liao X. et al. // Viral Immunol. 2011. Vol. 24, N 3. P. 199-209.

14. Martinez-Alonso S., Martinez-Lopez A., Estepa A. et al. // Vaccine. 2011. Vol. 29. P. 1289-1296.

15. Методы генетической инженерии / Под ред. А. А. Баева, К. Г. Скрябина. М., 1984.

16. Carroll T. D., Matzinger S. R., Barry P. A. et al. // J. Infect. Dis. 2014. Vol. 209, N 1. P. 24-33.

17. Quan Z., Qin Z. G., Zhen W. et al. // Vet. Immunol. Immunopathol. 2010. Vol. 136, N 3-4. P. 257-264.

18. Guo X., Zhang Q., Hou S. et al. // Vet. Immunol. Immunopathol. 2011. Vol. 144, N 3-4. P. 405-409.

19. Chen Y., Xiang L. X., Shao J. Z. // Fish Shellfish Immunol. 2007. Vol. 23, N 3. P. 589-600.

20. Pontarollo R. A., Babiuk L. A., Hecker R. et al. // J. Gen. Virol. 2002. Vol. 83. P. 2973-2981.

21. Kojima Y., Xin K. Q., Ooki T. et al. // Vaccine. 2002. Vol. 20, N 23-24. P. 2857-2865.


Review

Views: 407


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)