Stimulating effects of plasma and radio-wave treatments of red clover seeds on morphological and physiological parameters of seedlings
https://doi.org/10.29235/1029-8940-2020-65-2-191-198
Abstract
It was established that the treatment of clover seeds with radio frequency (RF) electromagnetic field and low pressure (200 Pa) RF plasma excited at a frequency of 5.28 MHz has a stimulating effect both on the germination of seeds and on the growth and development of plants grown in laboratory and field conditions. Plasma treatment for 5 min led to the greatest stimulation of seed germination and germination energy, a significant increase in the biomass of shoots and roots. At the same time, the content of phenolic compounds and flavonoids in plant leaves decreased.
Keywords
About the Authors
H. L. NedvedBelarus
Helen L. Nedved – Ph. D. (Biol.), Senior researcher
27, Akademicheskaya Str., 2200072, Minsk
J. N. Kalatskaja
Belarus
Joanna N. Kalatskaja – Ph. D. (Biol.), Leading researcher
27, Akademicheskaya Str., 2200072, Minsk
N. A. Laman
Belarus
Nikolai A. Laman – Academisian, D. Sc. (Biol.), Professor, Head of the Laboratory
27, Akademicheskaya Str., 2200072, Minsk,
V. V. Minkova
Belarus
Victioria V. Minkova – Junior researcher
27, Akademicheskaya Str., 2200072, Minsk
K. M. Herasimovich
Belarus
Kanstantsin M. Herasimovich – Junior researcher
27, Akademicheskaya Str., 2200072, Minsk
I. A. Ovchinnikov
Belarus
Igor A. Ovchinnikov – Assistant
27, Akademicheskaya Str., 2200072, Minsk
N. A. Kopylova
Belarus
Natalia A. Kopylova – Ph. D. (Biol.), Senior researcher
27, Akademicheskaya Str., 2200072, Minsk
I. I. Filatova
Belarus
Irina I. Filatova – Ph. D. (Phys. and Math.), Leading researcher
68-2, Nezavisimosti Ave., 2200072, Minsk
V. A. Lyushkevich
Belarus
Veronika A. Lyushkevich – Researcher
68-2, Nezavisimosti Ave., 2200072, Minsk
References
1. Pietruszewski S., Martínez E. Magnetic field as a method of improving the quality of sowing material: a review. International Agrophysics, 2015, vol. 29, no. 3, pp. 377–389. https://doi.org/10.1515/intag-2015-0044
2. Vian A., Davies E., Gendraud M., Bonnet P. Plant responses to high frequency electromagnetic field. BioMed Research International, 2016, vol. 2016, art. ID 1830262. https://doi.org/10.1155/2016/1830262
3. Maffei M. E. Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science, 2014, vol. 5, art. 445. https://doi.org/10.3389/fpls.2014.00445
4. Mildaziene V., Pauzaite G., Malakauskiene A., Zukiene R., Nauciene Z., Filatova I., Azharonok V., Lyushkevich V. Response of perennial woody plants to seed treatment by electromagnetic field and low-temperature plasma. Bioelectromagnetics, 2016, vol. 37, no. 8, pp. 536–548. https://doi.org/10.1002/bem.22003
5. Kalatskaja J. N., Laman N. A., Filatova I. I., Frolova T. V., Lyushkevich V. A., Chubrik N. I., Goncharik S. V. Influence of plasma and radio-wave treatment of corn seeds and their storage in adverse conditions on physiological and biochemical characteristics of seedlings. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2018, vol. 63, no. 1, pp. 7‒19 (in Russian).
6. Mildaziene V., Pauzaite G., Naucienė Z., Malakauskiene A., Zukiene R., Januskaitiene I., Jakstas V., Ivanauskas L., Filatova I., Lyushkevich V. Pre-sowing treatment with cold plasma and electromagnetic field increases secondary metabolite content in purple coneflower (Echinacea purpurea) leaves. Plasma Processes and Polymers, 2017, vol. 15, no. 2, p. 1700059. https://doi.org/10.1002/ppap.201700059
7. Cebulak T., Oszmiański J., Kapusta I., Lachowicz S. Effect of UV-C radiation, ultra-sonication electromagnetic field and microwaves on changes in polyphenolic compounds in chokeberry (Aronia melanospora). Molecules, 2017, vol. 22, no. 7, p. 1161. https://doi.org/10.3390/molecules22071161
8. Filatova I. I., Azharonok V. V., Goncharik S. V., Lushkevich V. A., Zhukovsky A. G., Gadzhieva G. I. Effect of Rf plasma treatment on the germination and phytosanitary state of seeds. Journal of Applied Spectroscopy, 2014, vol. 81, no. 2, pp. 250–256. https://doi.org/10.1007/s10812-014-9918-5
9. State Standard 12038-84. Seeds of crops. Germination determination methods. Moscow, Publishing house of standards, 1985. 55 p. (in Russian).
10. Alekseichuk G. N., Laman N. A. Physiological quality of seeds of crops and methods for its assessment. Minsk, Pravo i ekonomika Publ., 2005. 48 p. (in Russian).
11. Ladonne F. Relationship between standard germination test, conductivity test and field emergence of pea seeds. Acta Horticulturae, 1989, vol. 253, pp. 153–162. https://doi.org/10.17660/actahortic.1989.253.16
12. Holasova M., Fiedlerova V., Smrcinova H., Orsak M., Lachman J., Vavreinova S. Buckwheat – the source of antioxidant activity in functional foods. Food Research International, 2002, vol. 35, no. 2–3, pp. 207–211. https://doi.org/10.1016/s0963-9969(01)00185-5
13. Mal’tseva E. M., Egorova N. O., Egorova I. N. Quantitative determination of the total content of flavonoids in the herb of Sanguisorba officinalis L. Vestnik Ural’skoi meditsinskoi akademicheskoi nauki [Bulletin of the Ural medical academic science], 2011, no. 3–1, pp. 68–69 (in Russian).
14. Shlyk A. A. Determination of chlorophyll and carotenoids in green leaf extracts. Biokhimicheskie metody v fiziologii rastenii [Biochemical methods in plant physiology]. Moscow, 1971, pp. 154–170 (in Russian).
15. Grantz S. A. Primer of biostatistics. 7th ed. New York, McGraw-Hill, 2011. 320 p.
16. Novoselova A. S. Selection and seed production of clover. Moscow, Agropromizdat Publ., 1986. 200 p. (in Russian).
17. Mildažienė V., Aleknavičiūtė V., Žūkienė R., Paužaitė G., Naučienė Z., Filatova I., Lyushkevich V., Haimi P., Tamošiūnė I., Baniulis D. Treatment of common Sunfower (Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. Scientific Reports, 2019, vol. 9, no. 1, art. 6437. https://doi.org/10.1038/s41598-019-42893-5
18. Stamp N. Can the growth-differentiation balance hypothesis be tested rigorously? Oikos, vol. 107, no. 2, pp. 439–448. https://doi.org/10.1111/j.0030-1299.2004.12039.x
19. Deng B., Li Y., Xu D., Ye Q., Liu G. Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Scientific Reports, 2019, vol. 9, no. 1, art. 2370. https://doi.org/10.1038/s41598-019-38837-8
20. Shiwakoti S., Shannon D. A., Wood C. W., Joshee N., Rimando A., Lawrence K. S., Kemppainen B. Nitrogen, phosphorus, and potassium effects on biomass yield and flavonoid content of American skullcap (Scutellaria lateriflora). Journal of Plant Nutrition, 2016, vol. 39, no. 9, pp. 1240–1249. ttps://doi.org/10.1080/01904167.2015.1050509
21. Ballizany W. L., Hofmann R. W., Jahufer M. Z. Z., Barrett B. A. Genotype×environment analysis of flavonoid accumulation and morphology in white clover under contrasting field conditions. Field Crops Research, 2012, vol. 128, pp. 156–166. https://doi.org/10.1016/j.fcr.2011.12.006
22. Hofmann R. W., Jahufer M. Z. Z. Tradeoff between biomass and flavonoid accumulation in white clover reflects contrasting plant strategies. PloS ONE, 2011, vol. 6, no. 4, p. e18949. https://doi.org/10.1371/journal.pone.0018949