Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Epigenetic control of differentiation of mesenchymal stem cells. Stem cells differentiation in liver

https://doi.org/10.29235/1029-8940-2020-65-1-106-118

Abstract

The recent data on epigenetic control of differentiation in mesenchymal stem cells to be the background of embryogenesis and regeneration process in organism are considered. Epigenetic control is bases on three intramolecular mechanisms – DNA methylation, structural modification of histone proteins and microRNA active on posttranscription and posttranslation levels. As an example, the issues of stem cell differentiation in the liver are considered.

About the Authors

I. D. Volotovski
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Igor D. Volotovski – Academician, D. Sc. (Biol.), Head of the Labоratory

27, Akademicheskaya Str., 220072, Minsk



D. A. Ermolenko
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Darya A. Ermolenko – Junior researcher

27, Akademicheskaya Str., 220072, Minsk



N. I. Harokhava
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Nadezhda I. Harokhava – Junior researcher

27, Akademicheskaya Str., 220072, Minsk



References

1. Allis O. D., Caparras M., Jenuwein T., Reinberg D. (ed.). Epigenetics. New York, Cold Spring Harbor Laboratory Press, 2015. 984 p.

2. Hoffmann A., Zimmermann C. A., Spengler D. Molecular epigenetic switches in neurodevelopment in health and disease. Frontiers in Behavioral Neuroscience, 2015, vol. 9, art. 120. https://doi.org/10.3389/fnbeh.2015.00120

3. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D. S., Deans R. J., Keating A., Prockop D. J., Horwitz E. M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, vol. 8, no. 4, pp. 315–317. https://doi.org/10.1080/14653240600855905

4. Wang Y.-H., Wu D.-B., Chen B., Chen E.-Q., Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Research and Therapy, 2018, vol. 9, no. 1, art. 227. https://doi.org/10.1186/s13287-018-0972-4

5. Li X., Zhao X. Epigenetic regulation of mammalian stem cells. Stem Cells and Development, 2008, vol. 17, no. 6, pp. 1043–1052. https://doi.org/10.1089/scd.2008.0036

6. Podobinska M., Szablowska-Gadomska I., Augustyniak J., Sandvig I., Sandvig A., Buzanska, L. Epigenetic modulation of stem cells in neurodevelopment: the role of methylation and acetylation. Frontiers in Cellular Neuroscience, 2017, vol. 14, art. 23. https://doi.org/10.3389/fncel.2017.00023

7. Teven C. M., Liu X., Hu N., Tang N., Kim S. H., Huang E. [et al.]. Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells International, 2011, vol. 2011, art. ID 201231. https://doi.org/10.4061/2011/201371

8. Alles C. D., Jenuwein T. The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 2016, vol. 17, no. 8, pp. 487–500. https://doi.org/10.1038/nrg.2016.59

9. Guo J. U., Su Y., Zhong C., Ming G., Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 2011, vol. 145, no. 3, pp. 423–434. https://doi.org/10.1016/j.cell.2011.03.022

10. Moran-Salvador E., Mann J. Epigenetics and liver fibrosis. Cellular and Molecular Gastroenterology and Hepatology, 2017, vol. 4, no. 1, pp. 125–134. https://doi.org/10.1016/j.jcmgh.2017.04.007

11. Suganuma T., Workman J. L. Signals and combinatorial functions of histone modifications. Annual Review of Biochemistry, 2011, vol. 80, no. 1, pp. 473–499. https://doi.org/10.1146/annurev-biochem-061809-175347

12. Rothbart S. B., Strahl B. D. Interpreting the language of histone and DNA modifications. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanism, 2014, vol. 1839, no. 8, pp. 627–643. https://doi.org/10.1016/j.bbagrm.2014.03.001

13. Jenuwein T., Allis O. D. Translating the histone code. Science, 2001, vol. 293, no. 5532, pp. 1074–1080. https://doi.org/10.1126/science.1063127

14. Goldberg A. D., Allis C. D., Bernstein E. Epigenetics: a landscape takes shape. Cell, 2007, vol. 128, no. 4, pp. 635–638. https://doi.org/10.1016/j.cell.2007.02.006

15. Xu Y., Zhang S., Lin S., Guo Y., Deng W., Zhang Y., Xue Y. WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Research, 2016, vol. 45, no. D1, pp. D264–D270. https://doi.org/10.1093/nar/gkw1011

16. New M., Olzscha H., La Thangue N. B. HDAC inhibitor-based therapies: Can we interpret the code? Molecular Oncology, 2012, vol. 6, no. 6, pp. 637–656. https://doi.org/10.1016/j.molonc.2012.09.003

17. Moutinho C., Esteller M. MicroRNAs and epigenetics. Advances in Cancer Research. Vol. 135. miRNA and Cancer. London, 2017, pp. 189–220.

18. Huang J., Zhao L., Xing L., Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells, 2009, vol. 28, no. 2, pp. 357–364. https://doi.org/10.1002/stem.288

19. Dykes I. M., Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics, Proteomics and Bioinformatics, 2017, vol. 15, no. 3, pp. 177–186. https://doi.org/10.1016/j.gpb.2016.12.005

20. Chen Q., Shou P., Zheng C., Jiang M., Cao G., Yang Q., Shi, Y. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death and Differentiation, 2016, vol. 23, no. 7, pp. 1128–1139. https://doi.org/10.1038/cdd.2015.168

21. Mattick J. S., Makunin I. V. Non-coding RNA. Human Molecular Genetics, 2006, vol. 15, suppl. 1, pp. R17–R29. https://doi.org/10.1093/hmg/ddl046

22. Meunier P., Aaron J., Edouard C., Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clinical Orthopaedics and Related Research, 1971, vol. 80, pp. 147–154. https://doi.org/10.1097/00003086-197110000-00021

23. Tao Y.-C., Wang M.-L., Chen E.-Q., Tang H. Stem cells transplantation in the treatment of patients with liver failure. Current Stem Cell Research and Therapy, 2018, vol. 13, no. 3, pp. 193–201. https://doi.org/10.2174/1574888X13666180105123915

24. Miyajima A., Tanaka M., Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell, 2014, vol. 14, no. 5, pp. 561–574. https://doi.org/10.1016/j.stem.2014.04.010

25. Tanaka M., Itoh T., Tanimizu N., Miyajima A. Liver stem/progenitor cells: their characteristics and regulatory mechanisms. Journal of Biochemistry, 2011, vol. 149, no. 3, pp. 231–239. https://doi.org/10.1093/jb/mvr001

26. Yu J., Cao H., Yang J., Pan Q., Ma J., Li J., Li Y., Li J., Wang Y., Li L. In vivo hepatic differentiation of mesenchymal stem cells from human umbilical cord blood after transplantation into mice with liver injury. Biochemical and Biophysical Research Communications, 2012, vol. 422, no. 4, pp. 539–545. https://doi.org/10.1016/j.bbrc.2012.04.156


Review

Views: 850


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)