Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Feature of formation of photosynthetic apparatus of microcuttings of Populus tremula L. and Betula pendula Roth. at LED-lighting of various spectral composition during ex vitro adaptation

https://doi.org/10.29235/1029-8940-2019-64-4-456-466

Abstract

The peculiarities of the influence of LED-lighting of different spectral composition with varying ratios of physiologically significant spectral ranges on biometric parameters and the pigment composition of the leaf plate of microclonally propagated aspen (Populus tremula L.) and birch (Betula pendula Roth.) plants were identified during the adaptation ex vitro, which indicate the species specificity of plants response to the illumination spectrum.

About the Authors

T. N. Kudelina
V. F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Tatiana N. Kudelina – Researcher

27, Akademicheskaya Str., 220072, Minsk



A. V. Konstantinov
Forest Institute of the National Academy of Sciences of Belarus
Belarus

Andrei V. Konstantinov – Researcher

71, Proletarskaya Str., 246001, Gomel



L. V. Obukhovskaya
V. F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Lyudmila V. Obukhovskaya – Ph. D. (Biol.), Leading researcher

27, Akademicheskaya Str., 220072, Minsk



O. V. Molchan
V. F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Olga V. Molchan – P h. D . ( Biol.), Assistant professor, Head of the Laboratory

27, Akademicheskaya Str., 220072, Minsk



References

1. Strategy of adaptation of forestry of the Republic of Belarus to climate change for the period till 2050. Minsk, Ministry of Forestry of the Republic of Belarus, 2011. 119 p. (in Russian).

2. Tsyganov A. R., Klochkov A. V. Bioenergy: biomass energy potential. Minsk, Belaruskaya navuka Publ., 2012. 143 p. (in Russian).

3. Hynynen J., Niemistö P., Viherä-Aarnio A., Brunner A., Hein S., Velling P. Silviculture of birch (Betula pendula Roth. and Betula pubescens Ehrh.) in Northern Europe. Forestry, 2008, vol. 83, no. 1, pp. 103–119. https://doi.org/10.1093/forestry/cpp035

4. Pospóšilová J., Tichá I., Kadleček P., Haisel D., Plzáková Š. Acclimatization of micropropagated plants to ex vitro conditions: review. Biologia Plantarum, 1999, vol. 42, no. 4, pp. 481–497. https://doi.org/10.1023/A:1002688208758

5. Kumar K., Rao I. U. Morphophysiologicals problems in acclimatization of micropropagated plants in – ex vitro conditions: a review. Journal of Ornamental and Horticultural Plants, 2012, vol. 2, no. 4, pp. 271–283.

6. Furuya M. Phytochromes: their molecular species, gene family and functions. Annual Review of Plant Physiology and Plant Molecular Biology, 1993, vol. 44, no. 1, pp. 617–645. https://doi.org/10.1146/annurev.pp.44.060193.003153

7. Lin C., Shalitin D. Cryptochrome structure and signal transduction. Annual Review of Plant Biology, 2003, vol. 54, no. 1, pp. 469–496. https://doi.org/10.1146/annurev.arplant.54.110901.160901

8. Briggs W. R., Beck C. F., Cashmore A. R., Christie J. M., Hughes J., Jarillo J. A. [et al.]. The phototropin family of photoreceptors. Plant Cell, 2001, vol. 13, no. 5, pp. 993–997. https://doi.org/10.1105/tpc.13.5.993

9. Gupta S. D., Jatothu B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis: review. Plant Biotechnology Reports, 2013, vol. 7, no. 3, pp. 211–220. https://doi.org/10.1007/s11816-013-0277-0

10. Molchan O. V., Obukhovskaya L. V., Trofimov Yu. V., Pugachevskii A. V. LED-lighting in the production of greenhouse crop production Nauka i innovatsii = Science and innovations, 2017, no. 12, pp. 38–43 (in Russian).

11. Kulagin D. V., Konstantinov A. V., Khimchenko E. N. Development of the scheme for acclimatization of aspen microplants (Populus tremula L.) to ex vitro conditions. Sbornik nauchnykh trudov Instituta lesa Natsional’noi akademii nauk Belarusi [Collection of scientific papers of the Forest Institute of the National Academy of Sciences of Belarus]. Gomel’, 2011, iss. 71, pp. 279–287 (in Russian).

12. Owen H. R., Miller A. R. An examination and correction of plant tissue culture basal medium formulations. Plant Cell, Tissue and Organ Culture, 1992, vol. 28, no. 2, pp. 147–150. https://doi.org/10.1007/BF00055509

13. Establish the spectra and flux density of quanta of the LED emitter, allowing to optimize the production process of blueberry and rose explants. Minsk, 2014. 84 p.

14. Wettstein D. Formula of chlorophyll determination. Experimental Cell Research, 1957, vol. 12, no. 3, pp. 427–489.

15. Terminology of quantitative characteristics in the study of growth, productivity and photosynthesis of agricultural plants. Leningrad, 1982. 45 p. (in Russian).

16. Rokitskii P. F. Biological statistics. 3rd ed. Minsk, Vysheishaya shkola Publ., 1973. 320 p. (in Russian).

17. Demotes-Mainarda S., Pérona T., Corot A., Bertheloot J., Gourrierec J., Pelleschi-Travierb S. [et al.]. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 2016, vol. 121, pp. 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010

18. Fletcher J. M., Tatsiopoulou, A., Mpezamihigo M., Carew J. G., Henbest R. G. C., Hadley P. Far-red light filtering by plastic film, greenhouse-cladding materials: effects on growth and flowering in Petunia and Impatiens. Journal of Horticultural Science and Biotechnology, 2005, vol. 80, no. 3, pp. 303–306. https://doi.org/10.1080/14620316.2005.11511934

19. Mata D. A., Botto J. F. Manipulation of light environment to produce highquality poinsettia plants. HortScience, 2009, vol. 44, no. 3, pp. 702–706. https://doi.org/10.21273/hortsci.44.3.702

20. Rubin A. B., Venediktov P. S, Krendeleva T. E., Pashchenko V. Z. Regulation of the primary stages of photosynthesis with a change in the physiological state of plants. Fotosintez i produkcionnyi process [Photosynthesis and production process], Moscow, 1988, pp. 24–39 (in Russian).

21. Lin Y., Li J., Li B., He T. Effects of light quality on growth and development of procorm-like bodied of Dendrobium officinale in vitro. Plant Cell, Tissue and Organ Culture, 2011, vol. 105, no. 3, pp. 329–335. https://doi.org/10.1007/s11240-010-9871-9

22. Li H., Xu Z., Tang C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture, 2010, vol. 103, no. 2, pp. 155–163. https://doi.org/10.1007/s11240-010-9763-z

23. Saebo A., Krekling T., Appelgren M. Light quality affects photosynthesis and leaf anatomy of brich plantlets in vitro. Plant Cell, Tissue and Organ Culture, 1995, vol. 41, no. 2, pp. 177–185. https://doi.org/10.1007/BF00051588

24. Tallis M. J., Lin Y., Rogers A., Zhang J., Street N. R., Miglietta F., Karnosky D. F., De Angelis P., Calfapietra C., Taylor G. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytologist, 2010, vol. 186, no. 2, pp. 415–428. https://doi.org/10.1111/j.1469-8137.2010.03184.x


Review

Views: 619


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)