Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

About accumulation of thionins in barley seedling (Hordeum vulgare)

Abstract

The localization and dynamics of an antimicrobial protein thionin in green and etiolated barley seedlings cv Honar was studied. It was shown that the content of thionin in etiolated barley seedlings is much higher than that registered in green plants. In the bottom of the green leaf the content of thionin greatly exceeds that of the upper part of the sheet. It was found that only in the bottom part of the leaf thionin content increases with age of the seedlings. When placed in a dark, green seedlings show increasing thionin content but it does not reach the amount registered in the etiolated leaves of the same age. It was assumed that the high level of thionin in the lower part of seedlings and increase of it in darkness is consistent with the general strategy of plant defence against pathogens and caused by the fact that the nature of the lower part of the plant is contacted with the soil (located closer to the ground), where due to the presence of pathogenic micro-organisms and their spores as well as high humidity, especially at night, chances of infection are high.

About the Authors

M. S. Radyuk
Институт биофизики и клеточной инженерии НАН Беларуси
Belarus


I. N. Domanskaja
Институт биофизики и клеточной инженерии НАН Беларуси
Belarus


E. A. Budakova
Институт биофизики и клеточной инженерии НАН Беларуси
Belarus


I. A. Dremuk
Институт биофизики и клеточной инженерии НАН Беларуси
Belarus


N. V. Shalygo
Институт биофизики и клеточной инженерии НАН Беларуси
Belarus


References

1. Van Loon L. C., Van Strien E. A. // Physiol. and Mol. Plant Pathology. 1999. Vol. 55. P. 85-97.

2. Broekaert W. F., Cammue B. P. A., DeBolle M. F. C. etal. // Crit. Rev. Plant Sci. 1997. Vol. 16. P. 297-323.

3. Stec B. // Cell. Mol. Life Sci. 2006. Vol. 63. P. 1370-1385.

4. Castro M. S., Fontes W. // Protein Peptide Lett. 2005. Vol. 12. P. 11-16.

5. Balls A. K, Hale W. S., Harris, T. H. // Cereal Chem. 1942. Vol. 19.P. 279-288.

6. Hernandez-Lucas C., Carbonero P., Garcia-Olmedo F. // Journal of Agricultural and Food Chemistry. 1978. Vol. 26, N 4. P. 794-796.

7. Bekes F., Lasztity R. // Cereal Chem. 1981. Vol. 58. P. 360-361.

8. Ponz F., Paz-Ares J., Hernández-Lucas C. et al. // EMBOJ. 1983. Vol. 2, N 7. P. 1035-1040.

9. Bohlmann H., Apel K. // Mol. Gen. Genet. 1987. Vol. 207. P. 446-454.

10. Bohlmann H., Clausen S., Behnke S., Giese H. et al. // The EMBO Journal. 1988. Vol. 7, N 6. P. 1559-1565.

11. Reimann-Philipp U., Schrader G., Martinoia E. et al. // The Journal of Biol. Chem. 1989. Vol. 264, N 15. P. 8978-8984.

12. Радюк М. С., Доманская И. Н., Будакова Е. А., Спивак Е. А., Шалыго Н. В. // Весці НАН Беларусі. Сер. бiял. навук. 2013. № 3. С. 67-72.

13. Fullmer C. S. // Anal. Biochem. 1984. Vol. 142. P. 336-339.

14. Schagger H., von Jagow G. // Anal. Biochem. I 987. Vol. 166. P. 368-379.

15. Bradford M. // Analyt. Biochem. 1976. Vol. 72. P. 248-254.


Review

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)