Quantum-chemical modeling of the electronic structure of quercetin and inhibition by quercetin and quercetin–hydroxypropyl-β-cyclodextrin complex of lipid peroxidation in mitochondria and red blood cells of rats
https://doi.org/10.29235/1029-8940-2018-63-4-500-512
Abstract
Quercetin (3,3ʹ,4ʹ,5,7-pentahydroxyflavon), one of the most common and studied flavonoids, possesses the antioxidant activity and demonstrates the pronounced therapeutic potential under a number of pathological conditions. The purpose of this work is to estimate the electronic structure of the quercetin and its semi-quinone radical molecules and to compare the antioxidant activities of quercetin and its inclusion complex with hydroxypropyl-β-cyclodextrin. Generation of maps of the electron density distribution in quercetin and quercetin semi-quinone radical molecules showed that the active electron orbitals (HOMO and LUMO) are delocalized over all phenolic rings providing the radical stabilization. We have showed that quercetin prevents the tert-butyl hydroperoxide-induced lipid peroxidation of erythrocytes (IC50 = 25 ± 3 μM) and mitochondrial membranes (IC50 = 31 ± 4 μM). The efficiency of quercetin inhibition the reduced glutathione oxidation in erythrocytes and mitochondria is much lower reflecting the lipophilicity of polyphenol. Quercetin also prevented the hypochlorite-induced lysis of red blood cells (IC50 = 3 ± 0.5 μM). Our data revealed that the quercetin-hydroxypropyl-β-cyclodex-trin complex is more effective inhibitor of the membrane lipids peroxidation and glutathione oxidation processes.
About the Authors
A. G. VeikoBelarus
Artem G. Veiko – Postgraduate student.
22, Ozheshko Str., 230023, Grodno.
T. V. Ilyich
Belarus
Tatsiana V. Ilyich – Postgraduate student.
22, Ozheshko Str., 230023, Grodno.
E. A. Lapshina
Belarus
Elena A. Lapshina – Ph. D. (Biol.), Assistant professor.
22, Ozheshko Str., 230023, Grodno.
V. U. Buko
Belarus
Vyacheslav U. Buko – D. Sc. (Biol.), Professor, Head of the Department.
50, BLK, 230030, Grodno.
I. B. Zavodnik
Belarus
Ilya B. Zavodnik – D. Sc. (Biol.), Professor, Head of the Department.
22, Ozheshko Str., 230023, Grodno.
References
1. Moskaug J., Carlsen H., Myhrstad M. C., Blomhoff R. Polyphenols and glutathione synthesis regulation. American Journal of Clinical Nutrition, 2005, vol. 81, no. 1, pp. 277S–283S. https://doi.org/10.1093/ajcn/81.1.277s
2. Sandoval-Acuña C., Ferreira J., Speisky H. Polyhenols and mitochondria: An uрdate on their increasingly emerging ROS-scavenging indeendent actions. Archives of Biochemistry and Biophysics, 2014, vol. 559, pp. 75–90. https://doi.org/10.1016/j.abb.2014.05.017
3. Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 1996, vol. 20, no. 7, pp. 933–956. https://doi.org/10.1016/0891-5849(95)02227-9
4. Chervyakovskii Е. М., Kurchenko V. P., Kostyuk V. А. Physiological and therapeutic significance of the oxidative processes with the participation of flavonoids in plants and animals. Trudy Belorusskogo gosudarstvennogo universiteta. Fiziologicheskie, biokhimicheskie i molekulyarnye osnovy funktsionirovaniya biosistem [Proceedings of the Belarusian State University. Physiological, biochemical and molecular bases of functioning of biosystems], 2009, vol. 4, pt. 1, pp. 9–26 (in Russian).
5. Williams R. J., Spencer J. P. E., Rice-Evans C. A. Flavonoids: antioxidants or signalling molecules. Free Radical Biology and Medicine, 2004, vol. 36, no. 7, pp. 838–849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
6. Rao A. V., Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutritional Neuroscience, 2002, vol. 5, no. 5, pp. 291–309. https://doi.org/10.1080/1028415021000033767
7. Tarahovskii Yu. S., Kim Yu. A., Abdrasilov B. S., Muzafarov E. N. Flavonoids: biochemistry, biophysics, medicine. Pushchino, Sуnchrobook Publ., 2013. 310 p. (in Russian).
8. Halliwell B., Zhao K., Whiteman M. The gastrointestinal tract: a major site of antioxidant action? Free Radical Research, 2000, vol. 33, pp. 819–830.
9. Lin X., Lin Ch.-H., Zhao T., Zuo D., Ye Z., Liu L., Lin M.-T. Quercetin protects against heat stroke-induced myocardial injury in male rats: antioxidative and antiinflammatory mechanisms. Chemico-Biological Interactions, 2017, vol. 16, no. 265, pp. 47–54. https://doi.org/10.1016/j.cbi.2017.01.006
10. Aguirre L., Arias N., Macarulla M. T., Gracia A., Portillo M. P. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals Journal, 2011, vol. 4, pp. 189–198. https://doi.org/10.2174/1876396001104010189
11. Kleemann R., Verschuren L., Morrison M., Zadelaar S., van Erk M. J., Wielinga P. Y., Kooistra T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 2011, vol. 218, no. 1, pp. 44–52. https://doi.org/10.1016/j.atherosclerosis.2011.04.023
12. Caddeo C., Díez-Sales O., Pons R., Fernàndez-Busquets X., Fadda A. M., Manconi M. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro evaluation. Pharmaceutical Research, 2013, vol. 31, no. 4, pp. 959–968. https://doi.org/10.1007/s11095-013-1215-0
13. Shimosaki S., Tsurunaga Y., Itamura H., Nakamura M. Anti-allergic effect of the flavonoid myricitrin from Myrica rubra leaf extracts in vitro and in vivo. Natural Product Research, 2011, vol. 25, no. 4, pp. 374–380. https://doi.org/10.1080/14786411003774320
14. Ji L., Ma Y., Wang Z., Cai Z., Pang C., Wang Z. Quercetin prevents pyrrolizidine alkaloid clivorine-induced liver injury in mice by elevating body defense capacity. PLoS ONE, 2014, vol. 9, no. 6, pp. e98970. https://doi.org/10.1371/journal.pone.0098970
15. Chervyakovskii Е. М., Vlasova T. M., Gilep A. A., Kurchenko V. P., Usanov S. А. Chromatographic analysis and identification of main oxidation products of quercetin. Trudy Belorusskogo gosudarstvennogo universiteta. Fiziologicheskie, biokhimicheskie i molekulyarnye osnovy funktsionirovaniya biosistem [Proceedings of the Belarusian State University. Physiological, biochemical and molecular bases of functioning of biosystems], 2009, vol. 1, pt. 1, pp. 159–170 (in Russian).
16. Chervyakovsky E. M., Bolibrukh D. A., Kurovskii D. L., Gilep A. A., Vlasova T. M., Kurchenko V. P., Usanov S. A. Oligomeric oxidation products of the flavonoid quercetin. Chemistry of Natural Compounds, vol. 44, no. 4, 2008, pp. 427–431. https://doi.org/10.1007/s10600-008-9092-1
17. Johnson D., Lardy H. A. Isolation of liver or kidney mitochondria. Methods in Enzymology, 1967, vol. 10, pp. 94–96. https://doi.org/10.1016/0076-6879(67)10018-9
18. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, vol. 193, no. 1, pp. 265–275.
19. Stocks J., Dormandy T. L. The autoxidation of human red cell lipids induced by hydrogen peroxide. British Journal of Haematology, 1971, vol. 20, no. 1, pp. 95–111. https://doi.org/10.1111/j.1365-2141.1971.tb00790.x
20. Ellman G. L. Tissue sulf hydryl groups. Archives of Biochemistry and Biophysics, 1959, vol. 82, no. 1, pp. 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
21. Savic I. M., Nikolic V. D., Savic-Gajic I., Nikolic L. B., Radovanovic B. C., Mladenovic J. D. Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, vol. 82, no. 3–4, pp. 383–394. https://doi.org/10.1007/s10847-015-0500-4
22. Erkoç Ş., Erkoç F., Keskin N. Theoretical investigation of quercetin and its radical isomers. Journal of Molecular Structure: THEOCHEM, 2003, vol. 631, no. 1–3, pp. 141–146. https://doi.org/10.1016/s0166-1280(03)00237-9
23. Zavodnik I. B., Lapshina E. A., Zavodnik L. B., Bartosz G., Soszynski M., Bryszewska M. Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radical Biology and Medicine, 2001, vol. 30, no. 4, pp. 363–369. https://doi.org/10.1016/s0891-5849(00)00479-2
24. Zavodnik L. B., Zavodnik I. B., Lapshyna E. A., Buko V. U., Bryszewska M. J. Hypochlorous acid-induced membrane pore formation in red blood cells. Bioelectrochemistry, 2002, vol. 58, no. 2, pp. 157–161. https://doi.org/10.1016/s1567-5394(02)00151-2
25. Rasulev B. F., Abdullaev N. D., Syrov V. N., Leszczynski J. A quantitative structure-activity relationship (QSAR) study of the antioxidant activity of flavonoids. QSAR and Combinatorial Science, 2005, vol. 24, no. 9, pp. 1056–1065. https:// doi.org/10.1002/qsar.200430013
26. Jacobs H., Moalin M., Bast A., van der Vijgh W. J., Haenen G. R. An essential difference between the flavonoids monoHER and quercetin in their interplay with the endogenous antioxidant network. PLoS ONE, 2010, vol. 5, no. 11, p. e13880. https://doi.org/10.1371/journal.pone.0013880
27. Rong Y., Wang Z., Wu J., Zhao B. A theoretical study on cellular antioxidant activity of selected flavonoids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, vol. 93, pp. 235–239. https://doi.org/10.1016/j.saa.2012.03.008
28. Awad H. M., Boersma M. G., Vervoort J., Rietjens I. M. C. M. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Archives of Biochemistry and Biophysics, 2000, vol. 378, no. 2, pp. 224–233. https://doi.org/10.1006/abbi.2000.1832
29. Rietjens I. M., Boersma M. G., de Haan L., Spenkelink B., Awad H. M., Cnubben N. H., van Zanden J. J., van der Woude H., Alink G. M., Koeman J. H. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environmental Toxicology and Pharmacology, 2002, vol. 11, no. 3–4, pp. 321–333. https://doi.org/10.1016/s1382-6689(02)00003-0
30. Kühnau J. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Review of Nutrition and Dietetics, 1976, vol. 24, pp. 117–191. https://doi.org/10.1159/000399407
31. Galati G., Moridani M. Y., Chan T. S., O’Brien P. J. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radical Biology and Medicine, 2001, vol. 30, no. 4, pp. 370–382. https://doi.org/10.1016/s0891-5849(00)00481-0
32. Mulder P., Korth H.-G., Ingold K. U. Why quantum-thermochemical calculations must be used with caution to indicate a promising lead antioxidant. Helvetica Chimica Acta, 2005, vol. 88, no. 2, pp. 370–374. https://doi.org/10.1002/hlca.200590021
33. De Heer M. I., Mulder P., Korth H.-G., Ingold K. U., Lusztyk J. Hydrogen atom abstraction kinetics from intramolecularly hydrogen bonded ubiquinol-0 and other (poly)methoxy phenols. Journal of the American Chemical Society, 2000, vol. 122, no. 10, pp. 2355–2360. https://doi.org/10.1021/ja9937674
34. Potapovich A. I., Suhan T. O., Kostyuk T. V., Paskarella A., Kostyuk V. A. Functional abnormalities in endothelial cells exposed to oxidized LDL and their correction by plant polyphenols. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 2, Biologiya [Vestnik of the Belarusian State University, series 2, Biology], 2010, no. 3, pp. 43–47 (in Russian).
35. Kostyuk V. A., Potapovich A. I., Suhan T. O., de Luca C., Korkina L. G. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. European Journal of Pharmacology, 2011, vol. 658, no. 2–3, pp.248–256. https://doi.org/10.1016/j.ejphar.2011.02.022
36. Heijnen C. G. M., Haenen G. R. M. M., Oostveen R. M., Stalpers E. M., Bast A. Protection of flavonoids against lipid peroxidation: the structure activity relationship revisited. Free Radical Research, 2002, vol. 36, no. 5, pp. 575–581. https://doi.org/10.1080/10715760290025951
37. Buko V., Palecz B., Belica-Pacha S., Zavodnik I. The supramolecular complex of sertraline with cyclodextrins: physicochemical and pharmacological properties. Nano- and microscale drug delivery systems: design and fabrication. Amsterdam, Elsevier Publ., 2017, pp. 343–356.
38. Nguyen T. A., Liu B., Zhao J., Thomas D. S., Hook J. M. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chemistry, 2013, vol. 136, no. 1, p. 186–192. https://doi.org/10.1016/j.foodchem.2012.07.104
39. Liu B., Li W., Nguyen T. A., Zhao J. Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins. Food Chemistry, 2012, vol. 134, no. 2, pp. 926–932. https://doi.org/10.1016/j.foodchem.2012.02.207
40. Oleinik L. I., Buslova T. S., Veselova I. A., Shekhovtsova T. N. Kinetics of peroxidase-catalyzed oxidation of quercetin in the presence of β-cyclodextrin. Moscow University Chemistry Bulletin, 2011, vol. 66, no. 3, pp. 166–170. https://doi.org/10.3103/S0027131411030084
41. Bustos P. S., Deza-Ponzio R., Páez P. L., Albesa I., Cabrera J. L., Virgolini M. B., Ortega M. G. Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity. Environmental Toxicology and Pharmacology, 2016, vol. 48, pp. 253–264. https://doi.org/10.1016/j.etap.2016.11.004
42. Dorta D. J., Pigoso A. A., Mingatto F. E., Rodrigues T., Pestana C. R., Uyemura S. A., Santos A. C., Curti C. Antioxidant activity of flavonoids in isolated mitochondria. Phytotherapy Research, 2008, vol. 22, no. 9, pp. 1213–1218. https://doi.org/10.1002/ptr.2441
43. Weng Z., Zhou P., Salminen W. F., Yang X., Harrill A. H., Cao Z., Mattes W. B., Mendrick D. L., Shi Q. Green tea epigallocatechin gallate binds to and inhibits respiratory complexes in swelling but not normal rat hepatic mitochondria. Biochemical and Biophysical Research Communications, 2014, vol. 443, no. 3, pp. 1097–1104. https://doi.org/10.1016/j.bbrc.2013.12.110