Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

ON THE PROBLEM OF DEVELOPMENT OF THE UNIVERSAL IMMUNOTHERAPEUTIC ANTICANCER VACCINE

https://doi.org/10.29235/1029-8940-2018-63-3-374-381

Abstract

The authors of this paper theoretically substantiated the cancer treatment method, using in situ activation of dendritic cells with intratumoral injection of two molecular “danger signals” of bacterial origin – plasmid DNA containing unmethylated CpG-dinucleotides and cyclic diguanosine monophosphate (cyclo-diGMP). Based on literature data it might be presumed that this procedure is capable to release from the dying cancer cells a large number of tumor-associated mutant proteins, to recruit effector immune cells into the tumor bed, to activate dendritic cells and as a result to induce a potent anti-cancer T-cellular immune response leading to elimination of both primary solid tumors and possible metastases.

 

About the Authors

A. I. Zinchenko
Institute of Microbiology of the National Academy of Sciences of Belarus, Minsk
Belarus
Corresponding Member, D. Sc. (Biol.), Professor, Head of the Laboratory


A. S. Schokolova
Institute of Microbiology of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Biol.), Senior researcher


L. L. Birichevskaya
Institute of Microbiology of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Biol.), Senior researcher


References

1. Akhmetzhanov A. R., Hochberg M. E. Dynamics of preventive vs post-diagnostic cancer control using low-impact measures. eLife, 2015, vol. 4, art. e06266. https://doi.org/10.7554/eLife.06266

2. Welch H. G., Black W. C. Overdiagnosis in cancer. Journal of National Cancer Institute, 2010, vol. 102, no. 9, pp. 605‒613. https://doi.org/10.1093/jnci/djq099

3. Van Limbergen E. J., de Ruysscher D. K., Olivo Pimentel V., Marcus D., Berbee M., Hoeben A., Rekers N., Theys J., Yaromina A., Dubois L. J., Lambin Ph. Combining radiotherapy with immunotherapy: the past, the present and the future. British Journal of Radiology, 2017, vol. 90, no. 1076, art. 20170157. https://doi.org/10.1259/bjr

4. Mathenge E. G., Dean C. A., Clements D., Vaghar-Kashani A., Photopoulos S., Coyle K. M., Giacomantonio M., Malueth B., Nunokawa A., Jordan J., Lewis J. D., Gujar S. A., Marcato P., Lee P. W. K., Giacomantonio C. A. Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model. Neoplasia, 2014, vol. 16, no. 11, pp. 950–960. https://doi.org/10.1016/j.neo.2014.09.004

5. Keating P., Cambrosio A., Nelson N. C., Mogoutov A., Cointet J. P. Therapy’s shadow: a short history of the study of resistance to cancer chemotherapy. Frontiers in Pharmacology, 2013, vol. 4, art. 58. https://doi.org/10.3389/fphar.2013.00058

6. Doherty M. R., Smigiel J. M., Junk D. J., Jackson M. W. Cancer stem cell plasticity drives therapeutic resistance. Cancers, 2016, art. 8. https://doi.org/10.3390/cancers8010008

7. Bartkowiak D., Humble N., Suhr P., Hagg J., Mair K., Polivka B., Schneider U., Bottke D., Wiegel T. Second cancer after radiotherapy, 1981–2007. Radiotherapy and Oncology, 2012, vol. 105, no. 1, pp. 122–126. https://doi.org/10.1016/j. radonc.2011.09.013

8. Sverdlov E. D. Multidimensional complexity of cancer. Simple solutions are needed. Biochemistry, 2016, vol. 81, no. 7, pp. 731–738. https://doi.org/10.1134/S0006297916070099

9. Folkman J., Kalluri R. Cancer without disease. Nature, 2004, vol. 427, no. 6977, pp. 787. https://doi.org/10.1038/427787a

10. Acuna S. A., Fernande K. A., Daly C., Hicks L. K., Sutradhar R., Kim S. J., Baxter N. N. Cancer mortality among recipients of solid-organ transplantation in Ontario, Canada. JAMA Oncology, 2016, vol. 2, no. 4, pp. 463‒469. https://doi. org/10.1001/jamaoncol.2015.5137

11. Itoh K., Tilden A. B., Balch C. M. Interleukin 2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas. Cancer Research, 1986, vol. 46, no. 6, pp. 3011–3017.

12. Ohta A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Frontiers in Immunology, 2016, vol. 7, art. 109. https://doi.org/10.3389/fimmu.2016.00109

13. Kumar T., Patel N., Talwar A. Spontaneous regression of thoracic malignancies. Respiratory Medicine, 2010, vol. 104, no. 10, pp. 1543–1550. https://doi.org/10.1016/j.rmed.2010.04.026

14. Jackson R. Saint Peregrine, O.S.M. – the patron saint of cancer patients. Canadien Medical Association Journal, 1974, vol. 111, no. 8, pp. 824–827.

15. Kienle G. S. Fever in cancer treatment: Coley’s therapy and epidemiologic observations. Global Advances in Health and Medicine, 2012, vol. 1, no. 1, pp. 92–100. https://doi.org/10.7453/gahmj.2012.1.1.016

16. Krone B., Kolmel K. F., Grange J. M. The biography of the immune system and the control of cancer: from St Peregrine to contemporary vaccination strategies. BMC Cancer, 2014, vol. 14, no. 1, art. 595. https://doi.org/10.1186/1471-2407-14-595

17. Haro A. S. The effect of BCG-vaccination and tuberculosis on the risk of leukaemia. Developments in Biological Standardization, 1986, vol. 58, pt. A, pp. 433–449.

18. Tsung K., Norton J. A. Lessons from Coley’s toxin. Surgical Oncology, 2006, vol. 15, no. 1, pp. 25–28. https://doi. org/10.1016/j.suronc.2006.05.002

19. Garg A. D., Agostinis P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunological Reviews, 2017, vol. 280, no. 1, pp. 126–148. https://doi.org/10.1111/imr.12574

20. Garg A. D., More S., Rufo N., Mece O., Sassano M. L., Agostinis P., Zitvogel L., Kroemer G., Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology, 2017, vol. 6, no. 12, art. e1386829. https://doi.org/10.1080/2162402X.2017.1386829

21. Vandenberk L., Belmans J., van Woensel M., Riva M., van Gool S. W. Exploiting the immunogenic potential of cancer cells for improved dendritic cell vaccines. Frontiers in Immunology, 2016, vol. 6, art. 663. https://doi.org/10.3389/fimmu.2015.00663

22. Posey A. D., June C. H., Levine B. L. Cancer killers. Scientific American, 2017, vol. 316, no. 3, pp. 38–43. https://doi. org/ 10.1038/scientificamerican0317-38

23. Hammerich L., Binder A., Brody J. D. In situ vaccination: cancer immunotherapy both personalized and off-the-shelf. Molecular Oncology, 2015, vol. 9, no. 10, pp. 1966–1981. https://doi.org/10.1016/j.molonc.2015.10.016

24. Klein-González N., Holtick U., Fairfax K., Weihrauch M. R., von Bergwelt-Baildon M. S. Targeting malignant B cells as antigen-presenting cells: TLR-9 agonist induces systemic regression of lymphoma. Expert Review of Vaccines, 2011, vol. 10, no. 3, pp. 295‒298. https://doi.org/10.1586/erv.11.6

25. Jia H., Zhao T., Zou D., Jia X., Gao J., Song X. Therapeutic injection of a C-type CpG ODN induced an antitumor immune response in C57/BL6 mice of orthotopically transplanted hepatocellular carcinoma. Oncology Research, 2016, vol. 23, no. 6, pp. 321–326. https://doi.org/10.3727/096504016X14570992647041

26. Burdette D. L., Monroe K. M., Sotelo-Troha K., Iwig J. S., Eckert B., Hyodo M., et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature, 2011, vol. 478, no. 7370, pp. 515–518. https://doi.org/10.1038/nature10429

27. Chandra D., Quispe-Tintaya W., Jahangir A., Asafu-Adjei D., Ramos I., Sintim H. O., Zhou J., Hayakawa Y., Karaolis D. K., Gravekamp C. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunology Research, 2014, vol. 2, no. 9, pp. 901–910. https://doi.org/10.1158/2326-6066.CIR-13-0123

28. Corrales L., Glickman L. H., McWhirter S. M., Kanne D. B., Sivick K. E., Katibah G. E., Woo S. R., Lemmens E., Banda T., Leong J. J., Metchette K., Dubensky T. W., Gajewski T. F. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Reports, 2015, vol. 11, no. 7, pp. 1018–1030. https://doi.org/ 10.1016/j.celrep.2015.04.031

29. Rivera Vargas T., Benoit-Lizon I., Apetoh L. Rationale for stimulator of interferon genes-targeted cancer immunotherapy. European Journal of Cancer, 2017, vol. 75, pp. 86–97. https://doi.org/10.1016/j.ejca.2016.12.028

30. Carpentier A. F., Auf G., Delattre J. Y. CpG-oligonucleotides for cancer immunotherapy: review of the literature and potential applications in malignant glioma. Frontiers in Bioscience, 2003, vol. 8, no. 5, pp. 115–127. https://doi.org/10.2741/934

31. Brody J. D., Ai W. Z., Czerwinski D. K., Torchia J. A., Levy M., Advani R. H., Kim Y. H., Hoppe R. T., Knox S. J., Shin L. K., Wapnir I., Tibshirani R. J., Levy R. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. Journal of Clinical Oncology, 2010, vol. 28, no. 28, pp. 4324‒4332. https://doi.org/10.1200/ JCO.2010.28.9793

32. Mizuno Y., Naoi T., Nishikawa M., Rattanakiat S., Hamaguchi N., Hashida M., Takakura Y. Simultaneous delivery of doxorubicin and immunostimulatory CpG motif to tumors using a plasmid DNA/doxorubicin complex in mice. Journal of Controlled Release, 2010, vol. 141, no. 2, pp. 252–259. https://doi.org/10.1016/j.jconrel.2009.09.014

33. Li K., Qu S., Chen X., Wu Q., Shi M. Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. International Journal of Molecular Sciences, 2017, vol. 18, no. 2, art. 404. https://doi.org/ 10.3390/ijms18020404

34. Zinchenko A. I., Kvach S. V., Shchokolova A. S. Construction of plasmid enriched with immunostimulatory CpG motifs. Eastern European Scientific Journal, 2014, no. 3, pp. 10–13. https://doi.org/10.12851/EESJ201406C01ART02

35. Korovashkina A. S., Rymko A. N., Kvach S. V., Zinchenko A. I. Enzymatic synthesis of c-di-GMP using inclusion bodies of Thermotoga maritima full-length diguanylatecyclase. Journal of Biotechnology, 2012, vol. 164, no. 2, pp. 276–280. https://doi.org/10.1016/j.jbiotec.2012.12.006

36. McNeel D. G. Therapeutic cancer vaccines: how much closer are we? BioDrugs, 2017, vol. 32, no. 1, pp. 1‒7. https:// doi.org/10.1007/s40259-017-0257-y

37. Hundal J., Miller C. A., Griffith M., Griffith O. L., Walker J., Kiwala S., Graubert A., McMichael J., Coffman A., Mardis E. R. Cancer immunogenomics: computational neoantigen identification and vaccine design. Cold Spring Harbor Symposia on Quantative Biology, 2017, vol. 81, pp. 105‒111. https://doi.org/10.1101/sqb.2016.81.030726


Review

Views: 520


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)