Preview

Известия Национальной академии наук Беларуси. Серия биологических наук

Расширенный поиск

К ВОПРОСУ О СОЗДАНИИ УНИВЕРСАЛЬНОЙ ИММУНОТЕРАПЕВТИЧЕСКОЙ ПРОТИВОРАКОВОЙ ВАКЦИНЫ

https://doi.org/10.29235/1029-8940-2018-63-3-374-381

Полный текст:

Аннотация

В этом сообщении теоретически обосновывается метод лечения опухолей путем активации in situ дендритных клеток с помощью внутриопухолевой инъекции двух молекулярных «сигналов опасности» бактериального происхождения – плазмидной ДНК, содержащей неметилированные CpG-динуклеотиды, и циклического дигуанозинмонофосфата (цикло-диГМФ). Приведенные в литературе сведения дают основания предположить, что эта процедура способна высвободить из погибающих раковых клеток большое число опухоль-ассоциированных мутантных белков, рекрутировать в ложе опухоли эффекторные иммуноциты, активировать дендритные клетки и в результате – индуцировать мощный системный антираковый Т-клеточный иммунный ответ, способный ликвидировать как первичные солидные опухоли, так и возможные метастазы.

 

Об авторах

А. И. Зинченко
Институт микробиологии НАН Беларуси, Минск
Беларусь
член-корреспондент, д-р биол. наук, профессор, заведующий лабораторией


А. С. Щеколова
Институт микробиологии НАН Беларуси, Минск
Беларусь
канд. биол. наук, ст. науч. сотрудник


Л. Л. Биричевская
Институт микробиологии НАН Беларуси, Минск
Беларусь
канд. биол. наук, ст. науч. сотрудник


Список литературы

1. Akhmetzhanov, A. R. Dynamics of preventive vs post-diagnostic cancer control using low-impact measures / A. R. Akhmetzhanov, M. E. Hochberg // eLife. ‒ 2015. ‒ Vol. 4. ‒ Art. e06266. https://doi.org/10.7554/eLife.06266

2. Welch, H. G. Overdiagnosis in cancer / H. G. Welch, W. C. Black // J. of the Nat. Cancer Inst. ‒ 2010. ‒ Vol. 102, N 9. ‒ P. 605‒613. https://doi.org/10.1093/jnci/djq099

3. Combining radiotherapy with immunotherapy: the past, the present and the future / E. J. van Limbergen [et al.] // Brit. J. of Radiology. ‒ 2017. ‒ Vol. 90, N 1076. ‒ Art. 20170157. https://doi.org/10.1259/bjr

4. Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model / E. G. Mathenge [et al.] // Neoplasia. ‒ 2014. ‒ Vol. 16, N 11. ‒ P. 950–960. https://doi.org/10.1016/j.neo.2014.09.004

5. Therapy’s shadow: a short history of the study of resistance to cancer chemotherapy / P. Keating [et al.] // Frontiers in Pharmacology. ‒ 2013. ‒ Vol. 4. ‒ Art. 58. https://doi.org/10.3389/fphar.2013.00058

6. Cancer stem cell plasticity drives therapeutic resistance / M. R. Doherty [et al.] // Cancers. ‒ 2016. ‒ Vol. 8. ‒ Art. 8. https://doi.org/10.3390/cancers8010008

7. Second cancer after radiotherapy, 1981–2007 / D. Bartkowiak [et al.] // Radiotherapy and Oncology. ‒ 2012. ‒ Vol. 105, N 1. ‒ P. 122–126. https://doi.org/10.1016/j.radonc.2011.09.013

8. Sverdlov, E. D. Multidimensional complexity of cancer. Simple solutions are needed / E. D. Sverdlov // Biochemistry. ‒ 2016. ‒ Vol. 81, N 7. ‒ P. 731–738. https://doi.org/10.1134/S0006297916070099

9. Folkman, J. Cancer without disease / J. Folkman, R. Kalluri // Nature. ‒ 2004. ‒ Vol. 427, N 6977. ‒ P. 787. https://doi. org/10.1038/427787a

10. Cancer mortality among recipients of solid-organ transplantation in Ontario, Canada / S. A. Acuna [et al.] // JAMA Oncology. ‒ 2016. ‒ Vol. 2, N 4. ‒ P. 463‒469. https://doi.org/10.1001/jamaoncol.2015.5137

11. Itoh, K. Interleukin 2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas / K. Itoh, A. B. Tilden, C. M. Balch // Cancer Res. ‒ 1986. ‒ Vol. 46, N 6. ‒ P. 3011–3017.

12. Ohta, A. A metabolic immune checkpoint: adenosine in tumor microenvironment / A. Ohta // Frontiers in Immunology. ‒ 2016. ‒ Vol. 7. ‒ Art. 109. https://doi.org/10.3389/fimmu.2016.00109

13. Kumar, T. Spontaneous regression of thoracic malignancies / T. Kumar, N. Patel, A. Talwar // Respiratory Medicine. ‒ 2010. ‒ Vol. 104, N 10. ‒ P. 1543–1550. https://doi.org/10.1016/j.rmed.2010.04.026

14. Jackson, R. Saint Peregrine, O. S. M. – the patron saint of cancer patients / R. Jackson // Canad. Med. Assoc. J. ‒ 1974. ‒ Vol. 111, N 8. ‒ P. 824–827.

15. Kienle, G. S. Fever in cancer treatment: Coley’s therapy and epidemiologic observations / G. S. Kienle // Global Advances in Health and Medicine. ‒ 2012. ‒ Vol. 1, N 1. ‒ P. 92–100. https://doi.org/10.7453/gahmj.2012.1.1.016

16. Krone, B. The biography of the immune system and the control of cancer: from St Peregrine to contemporary vaccination strategies / B. Krone, K. F. Kolmel, J. M. Grange // BMC Cancer. ‒ 2014. ‒ Vol. 14, N 1. ‒ Art. 595. https://doi. org/10.1186/1471-2407-14-595

17. Haro, A. S. The effect of BCG-vaccination and tuberculosis on the risk of leukaemia / A. S. Haro // Developments in Biological Standardization. ‒ 1986. ‒ Vol. 58, pt. A. ‒ P. 433–439.

18. Tsung, K. Lessons from Coley’s toxin / K. Tsung, J. A. Norton // Surgical Oncology. ‒ 2006. ‒ Vol. 15, N 1. ‒ P. 25–28. https://doi.org/10.1016/j.suronc.2006.05.002

19. Garg, A. D. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses / A. D. Garg, P. Agostinis // Immunological Rev. ‒ 2017. ‒ Vol. 280, N 1. ‒ P. 126–148. https://doi.org/10.1111/imr.12574

20. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics / A. Garg [et al.] // Oncoimmunology. ‒ 2017. ‒ Vol. 6, N 12. ‒ Art. e1386829. https://doi.org/10.1080/2162402X.2017.1386829

21. Exploiting the immunogenic potential of cancer cells for improved dendritic cell vaccines / L. Vandenberk [et al.] // Frontiers in Immunology. ‒ 2016. ‒ Vol. 6. ‒ Art. 663. https://doi.org/10.3389/fimmu.2015.00663

22. Posey, A. D. Cancer killers / A. D. Posey, C. H. June, B. L. Levine // Scientific Amer. ‒ 2017. ‒ Vol. 316, N 3. ‒ P. 38–43. https://doi.org/10.1038/scientificamerican0317-38

23. Hammerich, L. In situ vaccination: cancer immunotherapy both personalized and off-the-shelf / L. Hammerich, A. Binder, J. D. Brody // Molecular Oncology. ‒ 2015. ‒ Vol. 9, N 10. ‒ P. 1966–1981. https://doi.org/10.1016/j.molonc.2015.10.016

24. Targeting malignant B cells as antigen-presenting cells: TLR-9 agonist induces systemic regression of lymphoma / N. Klein-González [et al.] // Expert Rev. Vaccines. ‒ 2011. ‒ Vol. 10, N 3. ‒ P. 295‒298. https://doi.org/10.1586/erv.11.6

25. Therapeutic injection of a C-type CpG ODN induced an antitumor immune response in C57/BL6 mice of orthotopically transplanted hepatocellular carcinoma / H. Jia [et al.] // Oncology Res. ‒ 2016. ‒ Vol. 23, N 6. ‒ P. 321–326. https://doi. org/10.3727/096504016X14570992647041

26. STING is a direct innate immune sensor of cyclic di-GMP / D. L. Burdette [et al.] // Nature. ‒ 2011. ‒ Vol. 478, N 7370. ‒ P. 515–518. https://doi.org/10.1038/nature10429

27. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer / D. Chandra [et al.] // Cancer Immunology Res. ‒ 2014. ‒ Vol. 2, N 9. ‒ P. 901–910. https://doi.org/10.1158/2326-6066.CIR-13-0123

28. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity / L. Corrales [et al.] // Cell Reports. ‒ 2015. ‒ Vol. 11, N 7. ‒ P. 1018–1030. https://doi.org/ 10.1016/j.celrep.2015.04.031

29. Rivera Vargas, T. Rationale for stimulator of interferon genes-targeted cancer immunotherapy / T. Rivera Vargas, I. Benoit-Lizon, L. Apetoh // European J. of Cancer. ‒ 2017. ‒ Vol. 75. ‒ P. 86–97. https://doi.org/10.1016/j.ejca.2016.12.028

30. Carpentier, A. F. CpG-oligonucleotides for cancer immunotherapy: review of the literature and potential applications in malignant glioma / A. F. Carpentier, G. Auf, J. Y. Delattre // Frontiers in Bioscience. ‒ 2003. ‒ Vol. 8, N 5. ‒ P. 115–127. https://doi.org/10.2741/934

31. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study / J. D. Brody [et al.] // J. of Clinical Oncology. ‒ 2010. ‒ Vol. 28, N 28. ‒ P. 4324‒4332. https://doi.org/10.1200/JCO.2010.28.9793

32. Simultaneous delivery of doxorubicin and immunostimulatory CpG motif to tumors using a plasmid DNA/doxorubicin complex in mice / Y. Mizuno [et al.] // J. of Controlled Release. ‒ 2010. ‒ Vol. 141, N 2. ‒ P. 252–259. https://doi. org/10.1016/j.jconrel.2009.09.014

33. Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways / K. Li [et al.] // Intern. J. of Molecular Sciences. ‒ 2017. ‒ Vol. 18, N 2. ‒ Art. 404. https://doi.org/10.3390/ijms18020404

34. Zinchenko, A. I. Construction of plasmid enriched with immunostimulatory CpG motifs / A. I. Zinchenko, S. V. Kvach, A. S. Shchokolova // Eastern European Scientific J. ‒ 2014. – N 3. ‒ P. 10–13. https://doi.org/10.12851/EESJ201406C01ART02

35. Enzymatic synthesis of c-di-GMP using inclusion bodies of Thermotoga maritima full-length diguanylatecyclase / A. S. Korovashkina [et al.] // J. Biotechnol. ‒ 2012. ‒ Vol. 164, N 2. ‒ P. 276–280. https://doi.org/10.1016/j.jbiotec.2012.12.006

36. McNeel, D. G. Therapeutic cancer vaccines: how much closer are we? / D. G. McNeel // BioDrugs. ‒ 2017. ‒ Vol. 32, N 1. ‒ P. 1‒7. https://doi.org/10.1007/s40259-017-0257-y

37. Cancer immunogenomics: computational neoantigen identification and vaccine design / J. Hundal [et al.] // Cold Spring Harbor Symposia on Quantitative Biology. ‒ 2017. ‒ Vol. 81. ‒ P. 105‒111. https://doi.org/10.1101/sqb.2016.81.030726


Просмотров: 161


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)