ВЛИЯНИЕ УСЛОВИЙ КУЛЬТИВИРОВАНИЯ НА АНТИМИКРОБНУЮ И АНТИАДГЕЗИВНУЮ АКТИВНОСТЬ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ БАКТЕРИЙ РОДОВ ACINETOBACTER, RHODOCOCCUS И NOCARDIA
https://doi.org/10.29235/1029-8940-2018-63-3-307-315
Анатацыя
Микробные поверхностно-активные вещества (ПАВ) являются продуктами мультифункционального назначения, поскольку они способны не только снижать поверхностное натяжение на границе раздела фаз и эмульгировать различные субстраты, но и проявлять антимикробную и антиадгезивную активность (в том числе и способность к разрушению биопленок). Однако в различных условиях культивирования продуцентов состав ПАВ и их свойства могут изменяться. Одним из подходов к повышению антимикробной и антиадгезивной активности ПАВ может быть увеличение в среде культивирования продуцентов содержания активаторов ключевых ферментов биосинтеза аминолипидов – наиболее эффективных антимикробных агентов. Активаторами НАДФ+-зависимой глутаматдегидрогеназы у Acinetobacter calcoaceticus IМВ В-7241 являются катионы кальция, магния и цинка, у Rhodococcus erythropolis ІМВ Ас-5017 и Nocardia vaccinii IМВ В-7405 − катионы кальция. Цель работы – исследовать антимикробную и антиадгезивную активность ПАВ, синтезированных A. calcoaceticus IМВ В-7241, R. erythropolis IМВ Ас-5017 и N. vaccinii ІМВ В-7405 в среде с повышенным содержанием активаторов НАДФ+-зависимой глутаматдегидрогеназы. ПАВ экстрагировали из супернатанта культуральной жидкости смесью хлороформа и метанола (2:1). Антимикробную активность ПАВ определяли по показателю минимальной ингибирующей концентрации (МИК), антиадгезивную – спектрофотометрическим методом. О степени разрушения биопленки судили по разнице между количеством адгезированных клеток в необработанных и обработанных ПАВ лунках полистиролового планшета с предварительно сформированной биопленкой и выражали в процентах. Установлено, что дополнительное внесение СaCl2 (0,1 г/л) в среду культивирования R. erythropolis IМВ Ac-5017, повышение концентрации этой соли до 0,4 г/л в среде для выращивания N. vaccinii ІМВ В-7405, а также добавление СaCl2 (0,1 г/л), увеличение содержания MgSO4 ·7H2O до 0,2 г/л или внесение Zn2+ (38 мкМ) в среду культивирования A. calcoaceticus IМВ В-7241 сопровождалось синтезом ПАВ, МИК которых по отношению к тест-культурам были в 1,2−13 раз ниже, их адгезия на абиотических поверхностях, обработанных такими ПАВ, – в среднем на 10–40 % ниже, а степень разрушения биопленок – на 7–20 % выше по сравнению с показателями, установленными для ПАВ, полученных на базовой среде. Приведенные данные свидетельствуют о возможности регуляции антимикробной и антиадгезивной активности микробных ПАВ в процессе культивирования продуцента.
Аб аўтарах
Т. ПирогУкраіна
Т. Шевчук
Украіна
Л. Никитюк
Украіна
Д. Луцай
Украіна
О. Палийчук
Украіна
Спіс літаратуры
1. Sekhon Randhawa, K. K. Rhamnolipid biosurfactants − past, present, and future scenario of global market / K. K. Sekhon Randhawa, P. K. Rahman // Frontiers Microbiology. – 2014. − Vol. 5. – Р. 454. https://doi.org/10.3389/fmicb.2014.00454
2. Current status in biotechnological production and applications of glycolipid biosurfactants / B. N. Paulino [et al.] // Appl. Microbiol. Biotechnol. – 2016. – Vol. 100, N 24. – P. 10265−10293. https://doi.org/10.1007/s00253-016-7980-z
3. Claus, S. Sophorolipid production by yeasts: a critical review of the literature and suggestions for future research / S. Claus, I. N. A. van Bogaert // Appl. Microbiol. Biotechnol. – 2017. – Vol. 101, N 21. – P. 7811–7821. https://doi.org/10.1007/ s00253-017-8519-7
4. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractios) / S. Itoh [et al.] // J. Antibiot. – 1971. – Vol. 24, N 12. – P. 855–859. https://doi.org/10.7164/antibiotics.24.855
5. Mireles, J. R. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation / J. R. Mireles, A. Toguchi, R. M. Harshey // J. Bacteriol. − 2001. – Vol. 183, N 20. − P. 5848–5854. https://doi.org/10.1128/jb.183.20.5848-5854.2001
6. Irie, Y. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms / Y. Irie, G. A. O’Toole, M. H. Yuk // FEMS Microbiol. Lett. – 2005. – Vol. 250, N 2. – P. 237–243. https://doi.org/10.1016/j.femsle.2005.07.012
7. Mandal, S. M. Lipopeptides in microbial infection control: scope and reality for industry / S. M. Mandal, A. E. A. D. Barbosa, O. L. Franco // Biotechnol. Adv. – 2013. − Vol. 31, N 2. – P. 338−345. https://doi.org/10.1016/j.biotechadv.2013.01.004
8. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation / Z. Xu [et al.] // Appl. Environ. Microbiol. – 2013. – Vol. 79, N 3. – P. 808−815. https://doi.org/10.1128/AEM.02645-12
9. Singh, A. K. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2 / A. K. Singh, R. Rautela, S. S. Cameotra // Microbial Cell Factories. – 2014. − Vol. 13, N 1. – Р. 67. https://doi.org/10.1186/1475-2859-13-67
10. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens / M. Elshikh [et al.] // New Biotechnology. – 2017. – Vol. 36. – P. 26–36. https://doi.org/10.1016/j.nbt.2016.12.009
11. Влияние катионов на активность НАДФ-зависимой глутаматдегидрогеназы у бактерий родов Acinetobacter, Rhodococcus и Nocardia – продуцентов поверхностно-активных веществ / Т. П. Пирог [и др.] // Вес. Нац. акад. навук Беларусi. Сер. бiял. навук. – 2017. – № 4. – С. 67–74.
12. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405 / T. P. Pirog [et al.] // Microbiology. – 2014. − Vol. 83, N 6. – P. 732–739. https://doi.org/10.1134/S0026261714060150
13. Influence of cultivation conditions on antimicrobial properties of Nocardia vaccinii ІMV B-7405 surfactants // T. P. Pirog [et al.] // Biotechnology Acta. – 2016. – Vol. 9, N 1. – P. 38–47. https://doi.org/10.15407/biotech9.01.038
14. Zezzi do Valle Gomes, M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria / M. Zezzi do Valle Gomes, M. Nitschke // Food Control. – 2012. − Vol. 25, N 2. − P. 441–447. https://doi.org/10.1016/j.foodcont.2011.11.025
15. Biosurfactants: potential applications in medicine / L. Rodrigues [et al.] // J. Antimicrob. Chemother. – 2006. – Vol. 57, N 4. – P. 609–618. https://doi.org/10.1093/jac/dkl024
16. Kalyani, R. Recent potential usage of surfactant from microbial origin in pharmaceutical and biomedical arena: a perspective / R. Kalyani, M. Bishwambhar, V. Suneetha // Int. Res. J. of Pharmacy. – 2011. – Vol. 2, N 8. – P. 11–15.
17. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens / F. Rivardo [et al.] // Appl. Microbiol. Biotechnol. – 2009. – Vol. 83, N 3. – P. 541–553. https://doi.org/10.1007/ s00253-009-1987-7
18. LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain / Y. Pecci [et al.] // J. Mass Spectrom. – 2010. – Vol. 45, N 7. − P. 772–778. https://doi.org/10.1002/jms.1767
19. Das, P. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity / P. Das, X.-P. Yang, L. Z. Ma // Frontiers in Microbiology. – 2014. – Vol. 5. – Art. 696. https://doi.org/10.3389/fmicb.2014.00696
20. Pirog, T. P. Microbial surface-active substances as antiadhesive agents / T. P. Pirog, I. V. Savenko, D. A. Lutsay // Biotechnologia Acta. – 2016. – Vol. 9, N 3. – P. 7–22. https://doi.org/10.15407/biotech9.03.007
21. Jolly, M. J. Inhibitory effect of biosurfactant purified from probiotic yeast against biofilm producers / M. J. Jolly // J. of Environmental Science, Toxicology and Food Technology. – 2013. – Vol. 6, N 1. – P. 51–55. https://doi.org/10.9790/2402-0615155
22. Ławniczak, Ł. Contributions of biosurfactants to natural or induced bioremediation / Ł. Ławniczak, R. Marecik, Ł. Chrzanowski // Appl. Microbiol. Biotechnol. – 2013. – Vol. 97, N 6. – P. 2327–2339. https://doi.org/10.1007/s00253-013-4740-1
23. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine / J. Chen [et al.] // Appl. Microbiol. Biotechnol. – 2017. – Vol. 101, N 23–24. – P. 8309–8319. https://doi.org/10.1007/s00253-017-8554-4