SMALL NON-CODING RNA: BIOLOGICAL FUNCTIONS AND BIOMEDICAL APPLICATION
https://doi.org/10.29235/1029-8940-2018-63-2-232-244
Abstract
Small non-coding RNAs (sncRNA) are short RNA molecules that are involved in gene expression, posttranscriptional modifications and cell immunity regulation. The most studied and the most interesting for the medical application classes are small interfering RNA (siRNA), microRNA (miRNA) and piwi-interacting RNA (piRNA). SncRNAs have a wide range of functions. Primary function of siRNA and miRNA is silencing of gene expression by binding or/and degradation of messenger RNA. PiRNA also have this function but its principal function is control of genome stability on the basis of blocking the activity of transposons. Many diseases, such as cancer, diabetes, neurological, and cardiovascular diseases are accompanied by distortion of sncRNA expression. Abnormal sncRNA expression profile can be used as a hallmark to determine certain type of cancer. In all types of cancer were discovered deviations in the sncRNA pool. From the medical point of view sncRNA can be used as disease marker or as a component of gene therapeutic drugs. In the case of markers usage sncRNAs deserve attention as universal and relatively stable samples. But frequently sncRNAs differ just by few nucleotides, which can create difficulties in their distinguishing. In the frame of gene therapy sncRNAs are able to silence theoretically any gene expression. As sncRNA affects mRNA but not DNA it allows avoiding accidental changes in the genome. In this case delivery systems for RNAs are highly needed, because sncRNAs are unable to penetrate the cell membrane and can be degraded by blood enzymes. Despite of existing problems, sncRNAs are promising compounds for the diagnosis and therapy of wide range of diseases.
About the Authors
V. AbashkinBelarus
Junior researcher
V. Dzmitruk
Belarus
Ph. D. (Biol.), Senior researcher
D. Shcharbin
Belarus
D. Sc. (Biol.), Assistant Professor, Head of the Laboratory
References
1. Cech T. R., Steitz J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, vol. 157, no. 1, pp. 77–94. DOI: 10.1016/j.cell.2014.03.008
2. Aravin A., Tuschl T. Identification and characterization of small RNAs involved in RNA silencing. FEBS Letters, 2005, vol. 579, no. 26, pp. 5830–5840. DOI: 10.1016/j.febslet.2005.08.009
3. Sripada L., Tomar D., Prajapati P., Singh R., Singh A. K., Singh R. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PloS One, 2012, vol. 7, no. 9, pp. e44873. DOI: 10.1371/journal.pone.0044873
4. Morin R. D., Aksay G., Dolgosheina E., Ebhardt H. A., Magrini V., Mardis E. R., Sahinalp S. C., Unrau P. J. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Research, 2008, vol. 18, no. 4, pp. 571–584. DOI: 10.1101/gr.6897308
5. Goldschmidt-Clermont M., Choquet Y., Girard-Bascou J., Michel F., Schirmer-Rahire M., Rochaix J. D. A small chlo- roplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell, 1991, vol. 65, no. 1, pp. 135–143. DOI: 10.1016/0092-8674(91)90415-u
6. Majdalani N., Vanderpool C. K., Gottesman S. Bacterial small RNA regulators. Critical Reviews in Biochemistry and Molecular Biology, 2005, vol. 40, no. 2, pp. 93–113. DOI: 10.1080/10409230590918702
7. Hussain M., Asgari S. MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proceedings of the National Academy of Sciences, 2014, vol. 111, no. 7, pp. 2746–2751. DOI: 10.1073/pnas.1320123111
8. Hamilton A. J., Baulcombe D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, vol. 286, no. 5441, pp. 950–952. DOI: 10.1126/science.286.5441.950
9. Watanabe T., Totoki Y., Toyoda A., Kaneda M., Kuramochi-Miyagawa S., Obata Y., Chiba H., Kohara Y., Kono T., Nakano T., Surani M. A., Sakaki Y., Sasaki H. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 2008, vol. 453, no. 7194, pp. 539–543. DOI: 10.1038/nature06908
10. Yang N., Kazazian H. H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nature Structural & Molecular Biology, 2006, vol. 13, no. 9, pp. 763–771. DOI: 10.1038/nsmb1141
11. Mello C. C., Conte D. Revealing the world of RNA interference. Nature, 2004, vol. 431, no. 7006, pp. 338–342. DOI: 10.1038/nature02872
12. Ghildiyal M., Seitz H., Horwich M. D., Li C., Du T., Lee S., Xu J., Kittler E. L. W., Zapp M. L., Weng Z. Zamore P. D. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science, 2008, vol. 320, no. 5879, pp. 1077–1081. DOI: 10.1126/science.1157396
13. Cao W., Hunter R., Strnatka D., McQueen C. A., Erickson R. P. DNA constructs designed to produce short hairpin, interfering RNAs in transgenic mice sometimes show early lethality and an interferon response. Journal of Applied Genetics, 2005, vol. 46, no. 2, pp. 217–225.
14. Yi R., Qin Y., Macara I. G., Cullen B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes and Development, 2003, vol. 17, no. 24, pp. 3011–3016. DOI: 10.1101/gad.1158803
15. Saito K., Siomi M. C. Small RNA-mediated quiescence of transposable elements in animals. Developmental Cell, 2010, vol. 19, no. 5, pp. 687–697. DOI: 10.1016/j.devcel.2010.10.011
16. Wang H. W., Noland C., Siridechadilok B., Taylor D. W., Ma E., Felderer K., Doudna J. A., Nogales E. Structural insights into RNA processing by the human RISC-loading complex. Nature Structural and Molecular Biology, 2009, vol. 16, no. 11, pp. 1148–1153. DOI: 10.1038/nsmb.1673
17. Bernstein E., Caudy A. A., Hammond S. M., Hannon G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, vol. 409, no. 6818, pp. 363–366. DOI: 10.1038/35053110
18. Brummelkamp T. R., Bernards R., Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, vol. 296, no. 5567, pp. 550–553. DOI: 10.1126/science.1068999
19. Janowski B. A., Younger S. T., Hardy D. B., Ram R., Huffman K. E., Corey D. R. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nature Chemical Biology, 2007, vol. 3, no. 3, pp. 166–173. DOI: 10.1038/ nchembio860
20. Janowski B. A., Huffman K. E., Schwartz J. C., Ram R., Hardy D., Shames D. S., Minna J. D., Corey D. R. Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nature Chemical Biology, 2005, vol. 1, no. 4, p. 216–222. DOI: 10.1038/nchembio725
21. Squadrito M. L., Baer C., Burdet F., Maderna C., Gilfillan G. D., Lyle R., Ibberson M., De Palma M. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Reports, 2014, vol. 8, no. 5, pp. 1432–1446. DOI: 10.1016/j.celrep.2014.07.035
22. Wienholds E., Plasterk R. H. A. MicroRNA function in animal development. FEBS Letters, 2005, vol. 579, no. 26, pp. 5911–5922. DOI: 10.1016/j.febslet.2005.07.070
23. Kim Y. K., Kim V. N. Processing of intronic microRNAs. EMBO Journal, 2007, vol. 26, no. 3, pp. 775–783. DOI: 10.1038/sj.emboj.7601512
24. Cai X., Hagedorn C. H., Cullen B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004, vol. 10, no. 12, pp. 1957–1966. DOI: 10.1261/rna.7135204
25. Borchert G. M., Lanier W., Davidson B. L. RNA polymerase III transcribes human microRNAs. Nature Structural and Molecular Biology, 2006, vol. 13, no. 12, pp. 1097–1101. DOI: 10.1038/nsmb1167
26. Han J., Lee Y., Yeom K. H., Nam J. W., Heo I., Rhee J. K., Sohn S. Y., Cho Y., Zhang B. T., Kim V. N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006, vol. 125, no. 5, pp. 887–901. DOI: 10.1016/j. cell.2006.03.043
27. Brennecke J., Aravin A. A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G. J. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell, 2007, vol. 128, no. 6, pp. 1089–1103. DOI: 10.1016/j.cell.2007.01.043
28. Juliano C., Wang J., Lin H. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annual Review of Genetics, 2011, vol. 45, no. 1, pp. 447–469. DOI: 10.1146/annurev-genet-110410-132541
29. Hartig J. V., Tomari Y., Förstemann K. piRNAs – the ancient hunters of genome invaders. Genes and Development, 2007, vol. 21, no. 14, pp. 1707–1713. DOI: 10.1101/gad.1567007
30. Ishizu H., Siomi H., Siomi M. C. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes and Development, 2012, vol. 26, no. 21, pp. 2361–2373. DOI: 10.1101/gad.203786.112
31. Watanabe T., Chuma S., Yamamoto Y., Kuramochi-Miyagawa S., Totoki Y., Toyoda A., Hoki Y., Fujiyama A., Shibata T., Sado T., Noce T., Nakano T., Nakatsuji N., Lin H., Sasaki H. MITOPLD is a mitochondrial protein essential for nuage formation devcel.2011.01.005
32. Nishimasu H., Ishizu H., Saito K., Fukuhara S., Kamatani M. K., Bonnefond L., Matsumoto N., Nishizawa T., Nakanaga K., Aoki J., Ishitani R., Siomi H., Siomi M. C., Nureki O. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature, 2012, vol. 491, no. 7423, pp. 284–287. DOI: 10.1038/nature11509
33. Mohn F., Handler D., Brennecke J. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science, 2015, vol. 348, no. 6236, pp. 812–817. DOI: 10.1126/science.aaa1039
34. Izumi N., Shoji K., Sakaguchi Y., Honda S., Kirino Y., Suzuki T., Katsuma S., Tomari, Y. Identification and functional analysis of the pre-piRNA 3′ Trimmer in silkworms. Cell, 2016, vol. 164, no. 5, pp. 962–973. DOI: 10.1016/j.cell.2016.01.008
35. Saito K., Sakaguchi Y., Suzuki T., Suzuki T., Siomi H., Siomi M. C. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes and Development, 2007, vol. 21, no. 13, pp. 1603–1608. DOI: 10.1101/gad.1563607
36. Fedyanin M. Yu., Ignatova E. O., Tyulyandin S. A. MicroRNA role in solid tumors. Zlokachestvennye opukholi [Malignant Tumours], 2013, no. 1 (5), pp. 3–14 (in Russian).
37. Cheng J., Deng H., Xiao B., Zhou H., Zhou F., Shen Z., Guo J. piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Letters, 2012, vol. 315, no. 1, pp. 12–17. DOI: 10.1016/j.canlet.2011.10.004
38. Chen R. X., Xia Y. H., Xue T. C., Ye S. L. Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells. Molecular Medicine Reports, 2012, vol. 5, no. 3, pp. 800–804. DOI: 10.3892/mmr.2011.695
39. Moon J., Xu L., Giffard R. G. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. Journal of Cerebral Blood Flow and Metabolism, 2013, vol. 33, no. 12, pp. 1976–1982. DOI: 10.1038/jcbfm.2013.157
40. Krichevsky A. M., Gabriely G. miR 21: a small multi ‐faceted RNA. Journal of Cellular and Molecular Medicine, 2009, vol. 13, no. 1, pp. 39–53. DOI: 10.1111/j.1582-4934.2008.00556.x
41. Cheng J., Guo J. M., Xiao B. X., Miao Y., Jiang Z., Zhou H., Li Q. N. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clinica Chimica Acta, 2011, vol. 412, no. 17–18, pp. 1621–1625. DOI: 10.1016/j.cca.2011.05.015
42. Merritt W. M., Lin Y. G., Han L. Y., Kamat A. A., Spannuth W. A., Schmandt R., Urbauer D., Pennacchio L. A., Cheng J. F., Nick A. M., Deavers M. T., Mourad-Zeidan A., Wang H., Mueller P., Lenburg M. E., Gray J. W., Mok S., Birrer M. J., Lopez-Berestein G., Coleman R. L., Bar-Eli M., Sood A. K. Dicer, Drosha, and outcomes in patients with ovarian cancer. New England Journal of Medicine, 2008, vol. 359, no. 25, pp. 2641–2650. DOI: 10.1056/nejmoa0803785
43. Hébert S. S., Papadopoulou A. S., Smith P., Galas M. C., Planel E., Silahtaroglu A. N., Sergeant N., Buée L., De Strooper B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Human Molecular Genetics, 2010, vol. 19, no. 20, pp. 3959–3969. DOI: 10.1093/hmg/ddq311
44. Haramati S., Chapnik E., Sztainberg Y., Eilam R., Zwang R., Gershoni N., McGlinn E., Heiser P. W., Wills A. M., Wirguin I, Rubin L. L., Misawa H., Tabin C. J., Brown Jr. R., Chen A., Hornstein E. miRNA malfunction causes spinal motor neuron disease Proceedings of the National Academy of Sciences, 2010, vol. 107, no. 29, pp. 13111–13116. DOI: 10.1073/ pnas.1006151107
45. Fang Y., Shi C., Manduchi E., Civelek M., Davies P. F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proceedings of the National Academy of Sciences, 2010, vol. 107, no. 30, pp. 13450–13455. DOI: 10.1073/pnas.1002120107
46. Kong L., Zhu J., Han W., Jiang X., Xu M., Zhao Y., Dong Q., Pang Z., Guan Q., Gao L., Zhao J., Zhao L. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetologica, 2011, vol. 48, no. 1, pp. 61–69. DOI: 10.1007/s00592-010-0226-0
47. Ji L., Chen X. Regulation of small RNA stability: methylation and beyond. Cell Research, 2012, vol. 22, no. 4, pp. 624– 636. DOI: 10.1038/cr.2012.36
48. Davies B. P., Arenz C. A fluorescence probe for assaying micro RNA maturation. Bioorganic and Medicinal Chemistry, 2008, vol. 16, no. 1, pp. 49–55. DOI: 10.1016/j.bmc.2007.04.055
49. Mattie M. D., Benz C. C., Bowers J., Sensinger K., Wong L., Scott G. K., Fedele V., Ginzinger D., Getts R., Haqq C. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer, 2006, vol. 5, no. 1. 14 p. DOI: 10.1186/1476-4598-5-24
50. Grimm D., Streetz K. L., Jopling C. L., Storm T. A., Pandey K., Davis C. R., Marion P., Salazar F., Kay M. A. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 2006, vol. 441, no. 7092, pp. 537–541. DOI: 10.1038/nature04791
51. Aagaard L., Rossi J. J. RNAi therapeutics: principles, prospects and challenges. Advanced Drug Delivery Reviews, 2007, vol. 59, no. 2–3, pp. 75–86. DOI: 10.1016/j.addr.2007.03.005
52. Judge A. D., Bola G., Lee A. C., MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Molecular Therapy, 2006, vol. 13, no. 3, pp. 494–505. DOI: 10.1016/j.ymthe.2005.11.002
53. Laganà A., Acunzo M., Romano G., Pulvirenti A., Veneziano D., Cascione L., Giugno R., Gasparini P., Shasha D., Ferro A., Croce C. M. miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Research, 2014, vol. 42, no. 9, pp. 5416–5425. DOI: 10.1093/nar/gku202
54. Bader A. G., Brown D., Winkler M. The promise of microRNA replacement therapy. Cancer Research, 2010, vol. 70, no. 18, pp. 7027–7030. DOI: 10.1158/0008-5472.can-10-2010
55. Ishida M., Selaru F. M. miRNA-based therapeutic strategies. Current Pathobiology Reports, 2013, vol. 1, no. 1, pp. 63–70. DOI: 10.1007/s40139-012-0004-5
56. Krützfeldt J., Kuwajima S., Braich R., Rajeev K. G., Pena J., Tuschl T., Manoharan M., Stoffel M. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Research, 2007, vol. 35, no. 9, pp. 2885–2892. DOI: 10.1093/nar/gkm024
57. Huang J. B., Liang J., Zhao X. F., Wu W. S., Zhang F. Epigenetics: novel mechanism of pulmonary hypertension. Lung, 2013, vol. 191, no. 6, pp. 601–610. DOI: 10.1007/s00408-013-9505-1
58. Sun H. X., Zeng D. Y., Li R. T., Pang R. P., Yang H., Hu Y. L., Zhang Q., Jiang Y., Huang L. Y., Tang Y. B., Yan G. J., Zhou J. G. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension, 2012, vol. 60, no. 6, pp. 1407–1414. DOI: 10.1161/hypertensionaha.112.197301
59. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Reviews Genetics, 2007, vol. 8, no. 4, pp. 286–298. DOI: 10.1038/nrg2005
60. Whitehead K. A., Langer R., Anderson D. G. Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery, 2009, vol. 8, no. 2, pp. 129–138. DOI: 10.1038/nrd2742
61. Gary D. J., Puri N., Won Y. Y. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. Journal of Controlled Release, 2007, vol. 121, no. 1, pp. 64–73. DOI: 10.1016/j. jconrel.2007.05.021
62. Pereira D. M., Rodrigues P. M., Borralho P. M., Rodrigues C. M. Delivering the promise of miRNA cancer therapeutics. Drug Discovery Today, 2013, vol. 18, no. 5–6, pp. 282–289. DOI: 10.1016/j.drudis.2012.10.002
63. Weber N., Ortega P., Clemente M. I., Shcharbin D., Bryszewska M., de la Mata F. J., Gómez R., Muñoz-Fernández M. A. Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. Journal of Controlled Release, 2008, vol. 132, no. 1, pp. 55–64. DOI: 10.1016/j.jconrel.2008.07.035
64. Ionov M., Ciepluch K., Garaiova Z., Melikishvili S., Michlewska S., Balcerzak Ł., Glińska S., Miłowska K., Gomez-Ramirez R., de la Mata F. J., Shcharbin D., Waczulikova I., Bryszewska M., Hianik T. Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers. Biochimica et Biophysica Acta (BBA) – Biomembranes, 2015, vol. 1848, no. 4, pp. 907–915. DOI: 10.1016/j.bbamem.2014.12.025
65. Ionov M., Lazniewska J., Dzmitruk V., Halets I., Loznikova S., Novopashina D., Apartsin E., Krasheninina O., Venyaminova A., Milowska K., Nowacka O., Gomez-Ramirez R., de la Mata F. J., Majoral J. P., Shcharbin D., Bryszewska M. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. International Journal of Pharmaceutics, 2015, vol. 485, no. 1–2, pp. 261–269. DOI: 10.1016/j.ijpharm.2015.03.024
66. Dzmitruk V., Szulc A., Shcharbin D., Janaszewska A., Shcharbina N., Lazniewska J., Novopashina D., Buyanova M., Ionov M., Klajnert-Maculewicz B., Gómez-Ramirez R., Mignani S., Majoral J. P., Muñoz-Fernández M. A., Bryszewska M. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, vol. 485, no. 1–2, pp. 288–294. DOI: 10.1016/j.ijpharm.2015.03.034
67. Ihnatsyeu-Kachan A., Dzmitruk V., Apartsin E., Krasheninina O., Ionov M., Loznikova S., Venyaminova A., Miłowska K., Shcharbin D., Mignani S., Muñoz-Fernández M. A., Majoral J. P., Bryszewska M. Multi-target inhibition of cancer cell growth by SiRNA cocktails and 5-fluorouracil using effective piperidine-terminated phosphorus dendrimers. Colloids and Interfaces, 2017, vol. 1, no. 1. 18 p. DOI: 10.3390/colloids1010006
68. Titze-de-Almeida R., David C., Titze-de-Almeida S. S. The Race of 10 Synthetic RNAi-based drugs to the pharmaceutical market. Pharmaceutical Research, 2017, vol. 34, no. 7, pp. 1339–1363. DOI: 10.1007/s11095-017-2134-2
69. Pearson S., Jia H., Kandachi K. China approves first gene therapy. Nature Biotechnology, 2004, vol. 22, pp. 3–4. DOI: 10.1038/nbt0104-3
70. Valdmanis P. N., Lisowski L., Kay M. A. rAAV-mediated tumorigenesis: still unresolved after an AAV assault. Molecular Therapy, 2012, vol. 20, no. 11, pp. 2014–2017. DOI: 10.1038/mt.2012.220
71. Booth C., Gaspar H. B., Thrasher A. J. Treating immunodeficiency through HSC gene therapy. Trends in Molecular Medicine, 2016, vol. 22, no. 4, pp. 317–327. DOI: 10.1016/j.molmed.2016.02.002
72. FDA approval brings first gene therapy to the United States. CAR T-cell therapy approved to treat certain children and young adults with B-cell acute lymphoblastic leukemia. U. S. Food and Drug Administration. Available at: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm574058.htm (accessed 13.12.2017).