Preview

Известия Национальной академии наук Беларуси. Серия биологических наук

Расширенный поиск

МАЛЫЕ НЕКОДИРУЮЩИЕ РНК: БИОЛОГИЧЕСКАЯ РОЛЬ И БИОМЕДИЦИНСКОЕ ПРИМЕНЕНИЕ

https://doi.org/10.29235/1029-8940-2018-63-2-232-244

Полный текст:

Аннотация

Малые некодирующие РНК (мнРНК) – короткие РНК, участвующие в регуляции экспрессии генов, иммунитете клетки и посттранскрипционных модификациях РНК. Среди всего разнообразия мнРНК наибольший интерес в плане биомедицинского применения представляют три класса малых РНК: малые интерферирующие РНК (миРНК), микроРНК и piwi-interacting РНК (пиРНК). МиРНК и микроРНК схожи по функциям и механизму действия: их главной задачей является сайленсинг генов на посттранскрипционном этапе. В отличие от них, пиРНК обеспечивает, главным образом, стабильность генома эмбриона путем блокирования активности мобильных элементов ДНК. Дисрегуляция мнРНК наблюдается при различных заболеваниях. Установлено, что нарушения экспрессии мнРНК возникают при развитии онкологических, неврологических, сердечно-сосудистых заболеваний, диабете. МнРНК могут выступать в качестве диагностических биомаркеров заболеваний и как компонент генно-терапевтических препаратов. Использование мнРНК как биомаркеров в медицине весьма перспективно, а существующие ограничения связаны со сложностью выявления мнРНК, различающихся одним или несколькими нуклеотидами. Весьма многообещающим является использование мнРНК в генной терапии, поскольку с их помощью гипотетически возможно отключить любой белковый компонент, не изменяя геном, что гораздо безопаснее других предлагаемых методов генной терапии. Главной задачей для клинического использования миРНК и микроРНК на сегодняшний день является создание эффективных систем доставки в клетки-мишени, поскольку несвязанные мнРНК не способны проникать через мембраны и разрушаются под действием ряда ферментов крови и тканей. Таким образом, несмотря на ряд имеющихся проблем, мнРНК являются перспективными агентами для диагностики и терапии целого спектра заболеваний.

Об авторах

В. М. Абашкин
Институт биофизики и клеточной инженерии НАН Беларуси, Минск
Беларусь
мл. науч. сотрудник


О. Г. Дмитрук
Институт биофизики и клеточной инженерии НАН Беларуси, Минск
Беларусь
канд. биол. наук, ст. науч. сотрудник


Д. Г. Щербин
Институт биофизики и клеточной инженерии НАН Беларуси, Минск
Беларусь
д-р биол. наук, доцент, заведующий лабораторией


Список литературы

1. Cech, T. R. The noncoding RNA revolution-trashing old rules to forge new ones / T. R. Cech, J. A. Steitz // Cell. – 2014. – Vol. 157, N 1. – P. 77–94.

2. Aravin, A. Identification and characterization of small RNAs involved in RNA silencing / A. Aravin, T. Tuschl // FEBS Letters. – 2005. – Vol. 579, N 26. – P. 5830–5840.

3. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA / L. Spirada [et al.] // PloS One. – 2012. – Vol. 7, N 9. – P. e44873.

4. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa / R. D. Morin [et al.] // Genome Research. – 2008. – Vol. 18, N 4. – P. 571–584.

5. A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii / M. Goldschmidt-Clermont [et al.] // Cell. – 1991. – Vol. 65, N 1. – P. 135–143.

6. Majdalani, N. Bacterial small RNA regulators / N. Majdalani, C. K. Vanderpool, S. Gottesman // Critical Reviews in Biochemistry and Molecular Biology. – 2005. – Vol. 40, N 2. – P. 93–113.

7. Hussain, M. MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells / M. Hussain, S. Asgari // Proc. of the Nat. Acad. of Sciences. – 2014. – Vol. 111, N 7. – P. 2746–2751.

8. Hamilton, A. J. A species of small antisense RNA in posttranscriptional gene silencing in plants / A. J. Hamilton, D. Baulcombe // Science. – 1999. – Vol. 286, N 5441. – P. 950–952.

9. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes / T. Watanabe [et al.] // Nature. – 2008. – Vol. 453, N 7194. – P. 539–543.

10. Yang, N. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells /

11. N. Yang, H. H. Kazazian // Nature Structural & Molecular Biology. – 2006. – Vol. 13, N 9. – P. 763–771.

12. Mello, C. C. Revealing the world of RNA interference / C. C. Mello, D. Conte // Nature. – 2004. – Vol. 431, N 7006. – P. 338–342.

13. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells / M. Ghildiyal [et al.] // Science. – 2008. – Vol. 320, N 5879. – P. 1077–1081.

14. DNA constructs designed to produce short hairpin, interfering RNAs in transgenic mice sometimes show early lethality and an interferon response / W. Cao [et al.] // J. of Applied Genetics. – 2005. – Vol. 46, N 2. – P. 217–225.

15. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs / R. Yi [et al.] // Genes and Development. – 2003. – Vol. 17, N 24. – P. 3011–3016.

16. Saito, K. Small RNA-mediated quiescence of transposable elements in animals / K. Saito, M. C. Siomi // Developmental Cell. – 2010. – Vol. 19, N 5. – P. 687–697.

17. Structural insights into RNA processing by the human RISC-loading complex / H. W. Wang [et al.] // Nature Structural and Molecular Biology. – 2009. – Vol. 16, N 11. – P. 1148–1153.

18. Role for a bidentate ribonuclease in the initiation step of RNA interference / E. Bernstein [et al.] // Nature. – 2001. – Vol. 409, N 6818. – P. 363–366.

19. Brummelkamp, T. R. A system for stable expression of short interfering RNAs in mammalian cells / T. R. Brummelkamp, R. Bernards, R. Agami // Science. – 2002. – Vol. 296, N 5567. – P. 550–553.

20. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs / B. A. Janowski [et al.] // Nature Chemical Biology. – 2007. – Vol. 3, N 3. – P. 166–173.

21. Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs / B. A. Janowski [et al.] // Nature Chemical Biology. – 2005. – Vol. 1, N 4. – P. 216–222.

22. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells / M. L. Squadrito [et al.] // Cell Reports. – 2014. – Vol. 8, N 5. – P. 1432–1446.

23. Wienholds, E. MicroRNA function in animal development / E. Wienholds, R. H. A. Plasterk // FEBS Letters. – 2005. – Vol. 579, N 26. – P. 5911–5922.

24. Kim, Y. K. Processing of intronic microRNAs / Y. K. Kim, V. N. Kim // EMBO Journal. – 2007. – Vol. 26, N 3. – P. 775–783.

25. Cai, X. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs / X. Cai, C. H. Hagedorn, B. R. Cullen // RNA. – 2004. – Vol. 10, N 12. – P. 1957–1966.

26. Borchert, G. M. RNA polymerase III transcribes human microRNAs / G. M. Borchert, W. Lanier, B. L. Davidson // Nature Structural and Molecular Biology. – 2006. – Vol. 13, N 12. – P. 1097–1101.

27. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex / J. Han [et al.] // Cell. – 2006. – Vol. 125, N 5. – P. 887–901.

28. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila / J. Brennecke [et al.] // Cell. – 2007. – Vol. 128, N 6. – P. 1089–1103.

29. Juliano, C. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms / C. Juliano, J. Wang, H. Lin // Annu. Rev. of Genetics. – 2011. – Vol. 45, N 1. – P. 447–469.

30. Hartig, J. V. piRNAs – the ancient hunters of genome invaders / J. V. Hartig, Y. Tomari, K. Förstemann // Genes and Development. – 2007. – Vol. 21, N 14. – P. 1707–1713.

31. Ishizu, H. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines / H. Ishizu, H. Siomi, M. C. Siomi // Genes and Development. – 2012. – Vol. 26, N 21. – P. 2361–2373.

32. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline / T. Watanabe [et al.] // Developmental Cell. – 2011. – Vol. 20, N 3. – P. 364–375.

33. Structure and function of Zucchini endoribonuclease in piRNA biogenesis / H. Nishimasu [et al.] // Nature. – 2012. – Vol. 491, N 7423. – P. 284–287.

34. Mohn, F. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis / F. Mohn, D. Handler, J. Brennecke // Science. – 2015. – Vol. 348, N 6236. – P. 812–817.

35. Identification and functional analysis of the pre-piRNA 3′ Trimmer in silkworms / N. Izumi [et al.] // Cell. – 2016. – Vol. 164, N 5. – P. 962–973.

36. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends / K. Saito [et al.] // Genes and Development. – 2007. – Vol. 21, N 13. – P. 1603–1608.

37. Федянин, М. Ю. Роль микро-РНК при солидных опухолях / М. Ю. Федянин, Е. О. Игнатова, С. А. Тюляндин // Злокачеств. опухоли. – 2013. – № 1 (5). – С. 3–14.

38. piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells / J. Cheng [et al.] // Cancer Letters. – 2012. – Vol. 315, N 1. – P. 12–17.

39. Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells / R. X. Chen [et al.] // Molecular Medicine Reports. – 2012. – Vol. 5, N 3. – P. 800–804.

40. Moon, J. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss / J. Moon, L. Xu, R. G. Giffard // J. of Cerebral Blood Flow and Metabolism. – 2013. – Vol. 33, N 12. – P. 1976–1982.

41. Krichevsky, A. M. miR 21: a small multi ‐ faceted RNA / A. M. Krichevsky, G. Gabriely // J. of Cellular and Molecular Medicine. – 2009. – Vol. 13, N 1. – P. 39–53.

42. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells / J. Cheng [et al.] // Clinica Chimica Acta. – 2011. – Vol. 412, N 17–18. – P. 1621–1625.

43. Dicer, Drosha, and outcomes in patients with ovarian cancer / W. M. Merritt [et al.] // New England J. of Medicine. – 2008. – Vol. 359, N 25. – P. 2641–2650.

44. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration / S. S. Hébert [et al.] // Human Molecular Genetics. – 2010. – Vol. 19, N 20. – P. 3959–3969.

45. miRNA malfunction causes spinal motor neuron disease / S. Haramati [et al.] // Proc. of the Nat. Acad. of Sciences. – 2010. – Vol. 107, N 29. – P. 13111–13116.

46. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro / Y. Fang [et al.] // Proc. of the Nat. Acad. of Sciences. – 2010. – Vol. 107, N 30. – P. 13450–13455.

47. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study / L. Kong [et al.] // Acta Diabetologica. – 2011. – Vol. 48, N 1. – P. 61–69.

48. Ji, L. Regulation of small RNA stability: methylation and beyond / L. Ji, X. Chen // Cell Research. – 2012. – Vol. 22, N 4. – P. 624–636.

49. Davies, B. P. A fluorescence probe for assaying micro RNA maturation / B. P. Davies, C. Arenz // Bioorganic and Medicinal Chemistry. – 2008. – Vol. 16, N 1. – P. 49–55.

50. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies / M. D. Mattie [et al.] // Molecular Cancer. – 2006. – Vol. 5, N 1. –14 p.

51. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways / D. Grimm [et al.] // Nature. – 2006. – Vol. 441, N 7092. – P. 537–541.

52. Aagaard, L. RNAi therapeutics: principles, prospects and challenges / L. Aagaard, J. J. Rossi // Advanced Drug Delivery Reviews. – 2007. – Vol. 59, N 2–3. – P. 75–86.

53. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo / A. D. Judge [et al.] // Molecular Therapy. – 2006. – Vol. 13, N 3. – P. 494–505.

54. miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs / A. Laganà [et al.] // Nucleic Acids Research. – 2014. – Vol. 42, N 9. – P. 5416–5425.

55. Bader, A. G. The promise of microRNA replacement therapy / A. G. Bader, D. Brown, M. Winkler // Cancer Research. – 2010. – Vol. 70, N 18. – P. 7027–7030.

56. Ishida, M. miRNA-based therapeutic strategies / M. Ishida, F. M. Selaru // Current Pathobiology Reports. – 2013. – Vol. 1, N 1. – P. 63–70.

57. Specificity, duplex degradation and subcellular localization of antagomirs / J. Krützfeldt [et al.] // Nucleic Acids Research. – 2007. – Vol. 35, N 9. – P. 2885–2892.

58. Epigenetics: novel mechanism of pulmonary hypertension / J. B. Huang [et al.] // Lung. – 2013. – Vol. 191, N 6. – P. 601–610.

59. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase / H. X. Sun [et al.] // Hypertension. – 2012. – Vol. 60, N 6. – P. 1407–1414.

60. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps / M. Esteller // Nature Reviews Genetics. – 2007. – Vol. 8, N 4. – P. 286–298.

61. Whitehead, K. A. Knocking down barriers: advances in siRNA delivery / K. A. Whitehead, R. Langer, D. G. Anderson // Nature Reviews Drug Discovery. – 2009. – Vol. 8, N 2. – P. 129–138.

62. Gary, D. J. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery / D. J. Gary, N. Puri, Y. Y. Won // J. of Controlled Release. – 2007. – Vol. 121, N 1. – P. 64–73.

63. Delivering the promise of miRNA cancer therapeutics / D. M. Pereira [et al.] // Drug Discovery Today. – 2013. – Vol. 18, N 5–6. – P. 282–289.

64. Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes / N. Weber [et al.] // J. of Controlled Release. – 2008. – Vol. 132, N 1. – P. 55–64.

65. Dendrimers complexed with HIV-1 peptides interact with liposomes and lipid monolayers / M. Ionov [et al.] // Biochimica et Biophysica Acta (BBA) – Biomembranes. – 2015. – Vol. 1848, N 4. – P. 907–915.

66. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction / M. Ionov [et al.] // Intern. J. of Pharmaceutics. – 2015. – Vol. 485, N 1–2. – P. 261–269.

67. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action / V. Dzmitruk [et al.] // Intern. J. of Pharmaceutics. – 2015. – Vol. 485, N 1–2. – P. 288–294.

68. Multi-target inhibition of cancer cell growth by SiRNA cocktails and 5-fluorouracil using effective piperidine-terminated phosphorus dendrimers / A. Ihnatsyeu-Kachan [et al.] // Colloids and Interfaces. – 2017. – Vol. 1, N 1. – 18 P.

69. Titze-de-Almeida, R. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market / R. Titze-de-Almeida, C. David, S. S. Titze-de-Almeida // Pharmaceutical Research. – 2017. – Vol. 34, N 7. – P. 1339–1363.

70. Pearson, S. China approves first gene therapy / S. Pearson, H. Jia, K. Kandachi // Nature Biotechnology. – 2004. – Vol. 22. – P. 3–4.

71. Valdmanis, P. N. rAAV-mediated tumorigenesis: still unresolved after an AAV assault / P. N. Valdmanis, L. Lisowski, M. A. Kay // Molecular Therapy. – 2012. – Vol. 20, N 11. – P. 2014–2017.

72. Booth, C. Treating immunodeficiency through HSC gene therapy / C. Booth, H. B. Gaspar, A. J. Thrasher // Trends in Molecular Medicine. – 2016. – Vol. 22, N 4. – P. 317–327.

73. FDA approval brings first gene therapy to the United States. CAR T-cell therapy approved to treat certain children and young adults with B-cell acute lymphoblastic leukemia [Electronic resource] // U.S. Food and Drug Administration. – Mode of access: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm574058.htm. – Date of access: 13.12.2017.


Просмотров: 528


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)