Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

MORPHOLOGY AND FUNCTION BASIS OF THE CREATION ARTIFICIAL SKIN (DERMAL EQUIVALENTS)

Abstract

The review of literature data and own results of the authors on skin structure, and skin structural components epidermis, derma and hypoderm are given. The special attention for derma intercellular matrix and role of fibroblasts in its shaping was paid. The methods of isolation and cultivation of fibroblasts and collagen isolation from connective tissue and development prospects of this biotechnology direction were described. The creation of artificial derma and tissue equivalents and its application in clinic praxis to treat the skin damages under the action of chemical and physical factors were considered.

About the Authors

I. D. Volotovski
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus
Academician, D. Sc. (Biol.), Head of the Laboratory


Z. B. Kvacheva
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus
Leading researcher


References

1. Stephens P., Genever P. Non-epithelial and mucosal progenitor сеll population. Oral Diseases, 2007, vol. 13, рр. 1–10. doi: 10.1111/j.1601-0825.2006.01314.x.

2. Sonell M., Caplan A. I. Fibroblasts – a diverse population at the center of it all. International Review of Cell and Molecular Biology, 2009, vol. 276, рр. 161–214.

3. Serov V. V., Shekhter A. B. Connective tissue. Functional morphology and general pathology. Мoscow, Meditsina [Medicine], 1981. 82 p. (in Russian).

4. Shechter A. B., Berchenko G. N. Fibroblasts and development of connective tissue. Ultrastructural aspects, buosynthe-sis, fibrillogenes, and collagen catabolism. Archiv patologii [Archive of Pathology], 1978, vol. 8, pp. 70–81. (in Russian).

5. Chang H. Y., Chi J. T., Dudoit S., Bondre C., Van de RiJn M., Borstein D., Brown P. O. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proccedings of the National Academy Sciences of the United States of America, 2002, vol. 99, no. 20, pp. 12877–12882. doi: 10.1073/pnas.162488599.

6. Nolte S. V., Xu W., Rennekampff H. O., Rodemann H. P. Diversity of fibroblasts – a review of implication for skin tissue engineering cell tissue organs. Cells Tissues Organs, 2008, vol. 187, no. 3, pp. 165–176.

7. Witte R. P., Kao W. J. Keratinocyte fibroblast paracrine interaction: The effects of substrate and culture condition. Biomaterials, 2005, vol. 26, no. 17, pp. 3673–3682. doi: 10.1016/j.biomaterials.2004.09.054.

8. Bozo I. Ia., Deev R. V., Pinaev G. P. Fibroblast – a specialized cell or functional state of the cells of mesenchimal origin. Tsitologiia [Citology], 2010, vol. 52, pp. 99–109. (in Russian).

9. Sorrel J. M., Caplan A. I. Fibroblast heterogeneity: more than skin deep. Journal of Cell Science, 2004, vol. 117, pp. 667–675. doi: 10.1242/jcs.01005.

10. Gago N., Perez-Lopes V., Sanz-Jaka J., Cormenzana P., Eizaguirre I., Bernad A., Izata A. Age-dependent depletion of if human skin derived progenitor cell. Stem Cells, 2009, vol. 27, pp. 1164–1172. doi:10.1002/stem.27.

11. Navsaria H. A., Myers S. R., Leigh I. M., McKay I. A. Culturing skin in vitro for wound therapy. Trends Biotechnology, 1995, vol. 13, no. 3, pp. 91–100. doi: 10.1016/S0167-7799(00)88913-1.

12. Freshni, R. Ia. Culture of animal cells: practical guidance, series: Methods in Biology, translation from the 5th En-glish edition: Iu. N. Khomiakov, T. I. Khomiakova. Moscow, Binom Laboratoriia znanii [Binom Knowledge Laboratory], 2011. 691 p. (in Russian).

13. Toma J., Akhavan M., Fernandes K., Toma J. G., Akhavan M., Fernandes K. J., Barnabé-Heider F., Sadikot A., Kaplan D. R., Miller F. D. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 2001, vol. 3, no. 9, pp. 778–784. doi: 10.1038/ncb0901-778.

14. Toma J. G., McKenzie I. A., Bagli D., Miller F. D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells, 2005, vol. 23, pp. 727–737. doi: 10.1634/stemcells.2004-0134.

15. Pontigia L., Klar A., Bottcher-Haberzeth S., Biedermann T., Meuji M., Reichman E. Optimizing in vitro culture conditions leads to significantly shorter рroduction time of human-dermo-epidermal skin substitutes. Pediatric Surgery International, 2013, vol. 29, no. 3, pp. 249–256. doi: 10.1007/s00383-013-3268-x.

16. Varkey M., Ding J., Tredget E. E. Differential collagen-glycosaminoglycan matrix remodeling by superficial and deep dermal fibroblasts: Potential therapeutic targets for hypertrophic scar. Biomaterials, 2011, vol. 32, no. 30, pp. 7581–7591. doi: 10.1016/j.biomaterials.2011.06.070.

17. Tajima S., Pinnell S. R. Collagen synthesis by human skin fibroblasts in culture: studies of fibroblasts explanted from papillary and reticular dermis. Journal of Investigative Dermatology, 1981, vol. 77, no. 5, pp. 410–412.

18. Richard A. F., Ghosh C. K., Marcia G. T. Tissue Engineering for Cutaneous Wounds. Journal of Investigative Dermatology, 2007, vol. 127, no. 5, pp. 1018–1029. doi: 10.1038/sj.jid.5700715.

19. Killat J., Reimers K., Choi C. Y., Jahn S., Vogt P. M., Radtke C. Cultivation of keratinocytes and fibroblasts in a three- dimensional bovine collagen-elastin matrix (Matriderm®) and application for full thickness wound coverage in vivo. International Journal of Molecular Sciences, 2013, vol. 14, pp. 14460–14474. doi: 10.3390/ijms140714460.

20. Petrof G., Abdul-Wahab A., McGrath J. A. Cell therapy in dermatology. Cold Spring Harbor Perspectives in Medicine, 2014, vol. 4, no. 6, pp. 1–29 a015156. doi: 10.1101/cshperspect.a015156.

21. Minlong Y. L., Xianmo D. Study on biodegradable polymers synthesis and characterization of poly(DL-lactic acid-co L-Lysine) random copolymer. European Polymer Journal, 2003, vol. 39, no. 5, pp. 977–983.

22. Ali-Bahar M., Bauer B. Tredget E. E. Ghahary A. Dermal fibroblasts from different lays of human skin are heterogeneous in expression of collagenase and types I and III procollagen mRNA. Wound Repair Regen, 2004, vol. 12, no. 2, pp. 175–182. doi:10.1111/j.1067-1927.2004.012110.x.

23. Huanjing B., Yan J. Сurrent progress of skin tissue engineering seed cells bioscaffolds and construction strategies. Burns & Trauma, 2013, vol. 1, no. 2, pp. 63–72. doi: 10.4103/2321-3868.118928.

24. Smirnov S. V., Kiselev I. V., Vasil’ev A. V., Terskikh V. V. Modern methods of cellular therapy of burnes. Khirurgiia [Surgery], 2003, no. 12, pp. 58–62. (in Russian).

25. Cell technologies for regenerative medicine, ed.: G. P. Pinaev, M. S. Bogdanova, A. M. Kol’tsova. St. Petersburg, Izdatel’stvo Politekhnicheskogo universitetata [Publishing house of the Polytechnic University], 2011. 333 p. (in Russian).

26. Tumanov V. P, Zhakota D. A, Korchagina N. S. 30-year experience of development and application of cell technologies in clinical practice. Plasticheskaia khirurgiia i kosmetologiia [Plastic Surgery and Cosmetology], 2012, no. 3, pp. 433– 444. (in Russian).


Review

Views: 614


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)