Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

ANALYSIS OF INDIVIDUAL CLADOCERA AND COPEPODS FROM MESOTROPHIC LAKE USING THE PHENOM PROX-SEM/EDS

Abstract

The stoichiometric analysis of Cladocera and Copepods from four different habitats of Obsterno mesotrophic lake in Belarus have been conducted in September 2016 using a method based on X-ray microanalysis, Phenom Prox Scanning Electron Microscope (SEM) with an elemental detection system (EDS), for measurement of atomic weight fractions of carbon, nitrogen and phosphorus elements in a designated area of zooplankton tissues. Phenom Prox SEM/EDS provided atomic weight percent of C:N, C:P, N:P ratios for Cladocera in pelagial, rush beds and nymphaea and for Copepods in pelagial, bare littoral, rush beds and nymphaea respectively. For Cladocera, the content of carbon in tissues was significantly higher in pelagial than in rush beds and nymphaea habitats (p < 0.01), opposite to nitrogen and phosphorous which contents were significantly lower in the pelagial (p < 0.01) comparing with other habitats. In the case of Copepods contents of carbon and nitrogen in their tissues did not differ between habitats. Significant among habitats differences were found for phosphorus – its content was significantly higher in Copepods from pelagial than from nymphaea habitat (p < 0.01).The purpose of this research is to determine the main biochemical elements content in zooplankton samples for different biotopes and to assess the elemental composition.

About the Authors

Shabnam G. Farahani
Scientific and Practical Center for Bioresources of the National Academy of Sciences of Belarus
Belarus
Postgraduate student


A. Wojtal-Frankiewicz
University of Lodz
Poland
Professor, Director


P. Frankiewicz
University of Lodz
Poland
Professor


Zh. Buseva
Scientific and Practical Center for Bioresources of the National Academy of Sciences of Belarus
Belarus
Ph. D. (Biol.), Senior researcher


References

1. Redfield A. C. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume, Universitety Press of Liverpool, Liverpool, 1934, pp. 170–192.

2. Redfield A. C. The biological control of chemical factors in the environment. American Scientist, 1958, vol. 46, no. 3, pp. 205–221.

3. Elser J. J., O’brien W. J., Dobberfuhl D. R., Dowling T. E. The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. Journal of Evolutionary Biology, 2000b, no. 13, pp. 845–853. doi: 10.1046/j.1420-9101.2000.00215.x.

4. Evans M. S., Eadie B. J., Glover R. M. Sediment trap studies in southeastern Lake Michigan: Fecal pellet express or the more traveled route? Journal of Great Lakes Research, 1998, vol. 24, iss. 3, pp. 555–568.

5. Quigg A. The evolutionary inheritance of elemental stoichiometry in marine plankton. Nature, 2003, vol. 425, pp. 291–294. doi: http://dx.doi.org/10.1038/nature01953 PMid:13679916.

6. Lenton T. M., Klausmeier K. Biotic stoichiometry controls on the deep ocean N:P ratio. Biogeosciences, 2007, no. 4, pp. 353–367.

7. Flynn K. J. Ecological modeling in a sea of variable stoichiometry: Dysfunctionality and the legacy of Redfield and Monod. Journal of Progress in Oceanography, 2010, vol. 84, iss. 1/2, pp. 52–65. doi: https://doi.org/10.1016/j.pocean.2009.09.006.

8. Quigg A., Irwin A. J., Finkel Z. V. Evolutionary imprint of endosymbiosis of elemental stoichiometry: testing inheritance hypotheses. Proceedings of the Royal Society Biological Sciences, 2010, vol. 278, pp. 526–534. doi:10.1098/rspb.2010.1356.

9. Hart D. R., Stone L., Berman T. Seasonal dynamics of the Lake Kinneret food web: the importance of the microbial loop. Limnology and Oceanography, 2000, vol. 45, iss. 2, pp. 350–361. doi: 10.4319/lo.2000.45.2.0350.

10. Gilbert P. M. Interactions of top-down and bottom-up control in planktonic nitrogen cycling. Hydrobiologia, 1998, vol. 363, iss. 1/3, pp. 1–12. doi: 10.1023/A:1003125805822.

11. Vanni M. J. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics Journal, 2002, vol. 33, pp. 341–370. doi: https://doi.org/10.1146/annurev.ecolsys.33.010802.150519.

12. Wen Y. H., Peters R. H. Empirical models of phosphorus and nitrogen excretion rates by zooplankton. Limno-logy and Oceanography, 1994, vol. 39, iss. 7, pp. 1669–1679. doi: 10.4319/lo.1994.39.7.1669.

13. Hudson J. J., Taylor W. D. Measuring regeneration of dissolved phosphorus in planktonic communities. Limno-logy and Oceanography, 1996, vol. 41, iss. 7, pp. 560–1565. doi: 10.4319/lo.1996.41.7.1560.

14. Hudson J. J., Taylor W. D., Schindler D. W. Planktonic nutrient regeneration and cycling efficiency in temperate lakes. Nature, 1999, vol. 400, pp. 659–661. doi: 10.1038/23240.

15. Urabe J., Nakanishi M., Kawabata K. Contribution of metazoan plankton to the cycling of nitrogen and phosphorus in Lake Biwa. Journal of Limnology and Oceanography, 1995, vol. 40, iss. 2, pp. 232–242. doi: 10.4319/lo.1995.40.2.0232.

16. Sigee D. C., Krivtsov V., Bellinger E. Elemental concentrations, correlations and ratios in micropopulations of Ceratium hirundinella (Pyrrophyta): and X-ray microanalytical study. European Journal of Phycology, 1998, no. 33, pp. 155–164.

17. Krivtsov V., Bellinger E. G., Sigee D. C. Changes in the elemental composition of Asterionella Formosa during the diatom spring bloom. Journal of Plankton Research, 2000, vol. 22, no. 1, pp. 169–184. doi: https://doi.org/10.1093/ plankt/22.1.169.

18. Heldal M., Scanlan D. J., Norland S., Thingstad F., Mann N. H. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnology and Oceanography, 2003, vol. 48, no. 5, pp. 1732–1743.

19. Heldal M., Norland S., Tumyr O. X-ray microanalytic method for measurement of dry matter and elemental concentration of individual bacteria. Applied and Environmental Microbiology, 1985, vol. 50, no. 5, pp. 1251–1257.

20. Booth K. N., Sigee D. C., Bellinger E. Studies on the occurrence and elemental composition of bacteria in freshwater plankton. Journal of Scanning Microscopy, 1987, vol. 1, no. 4, pp. 2033–2042.

21. Norland S., Fagerbakke K. M., Heldal M. Light element analysis of individual bacteria by X-ray microanalysis. Applied and Environmental Microbiology, 1995, vol. 61, no. 4, pp. 1357–1362.

22. Vrede K., Heldal M., Norland S., Bratbak G. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Applied and Environmental Microbiology, 2002, vol. 68, no. 6, pp. 2965–2971.

23. Cole J. J., Carpenter S. R., Kitchell J., Pace M. L., Solomon C. T., Weidel B. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences USA, 2011, vol. 108, no. 5, pp. 1975–1980.

24. Urabe J. N and P cycling coupled by grazers’ activities: food quality and nutrient release by zooplankton. Ecology, 1993, vol. 74, pp. 2337–2350.

25. Speas D. W., Duffy W. G. Uptake of dissolved organic carbon (DOC) by Daphnia pulex. Journal of Freshwater Ecology, 1998, no. 13, pp. 457–463.

26. Tamelander T., Aubert A. B., Wexels Riser C. Export stoichiometry and contribution of Copepod faecal pellets to vertical flux of particulate organic carbon, nitrogen and phosphorus. Marine Ecology Progress Series, 2012, vol. 459, pp. 17–28.

27. Elser J. J., Chrzanowski T. H., Sterner R. W., Mills K. H. Stoichiometric constraints on food-web dynamics: a whole-lake experiment on the Canadian Shield. Ecosystems, 1998, no. 1, pp. 120–136.

28. Darchambeau F., Færøvig P. J., Hessen D. O. How Daphnia copes with excess carbon in its food. Oecologia, 2003, vol. 136, pp. 336–346. doi:10.1007/s00442-003-1283-7.

29. Andersen T., Hessen D. O. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography, 1991, no. 36, pp. 807–814.

30. Hessen D. O., Lyche A. Inter- and intraspecific variations in zooplankton element composition. Archiv für Hydrobiologie, 1991, vol. 121, pp. 343–353.

31. Elser J. J., Dobberfuhl D. R., MacKay N. A., Schampel J. H. Organism size, life history, and N:P stoichiometry: to-wards a unified view of cellular and ecosystem processes. Bioscience, 1996, vol. 46, pp. 674–684.

32. Dobberfuhl D. R. Elemental stoichiometry in crustacean zooplankton: phylogenetic patterns, physiological mechanisms, and ecological consequences. Ph. D. dissertation, Department of Biology, Arizona State University, Tempe, Arizona, 1999.

33. Elser J. J., Fagan W. F., Denno R. F., Dobberfuhl D. R., Folarin A., Huberty A., Interlandi S., Kilham S. S., MeCauley E., Schulz K. L.,Siemann E. H., Sterner R. W. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, vol. 408, pp. 578–580.

34. Gismervik J. Stoichiometry of some marine planktonic crustaceans. Journal of Plankton Research, 1997, vol. 19, no. 2, pp. 279–285.

35. Sargent J. R., Henderson R. J. Lipids. The Biological Chemistry of Marine Copepods, Corner E. D. S., O’Hara S. C. M., eds. Oxford, 1986, pp. 59–108.

36. Tande K. S. Ecological investigations on the zooplankton community of Balsfjorden, Northern Norway: Generation cycles, and variation in body weight and body content of carbon and nitrogen related to overwintering and reproduction in the Copepod Calanus finmarchicus (Gunnerus). Journal of Experimental Marine Biology, 1982, vol. 62, pp. 129–142.

37. Gronvik S., Hopkins C. C. E. Ecological investigation of the zooplankton community of Balsfjorden northern Norway: Generation cycle, seasonal vertical distribution, and seasonal variations in body weight and carbon and nitrogen content of the copepod Metridia longa (Lubbock). Journal of Experimental Marine Biology and Ecology, 1984, vol. 80, pp. 93–107.

38. Goldman J., McCarthy J. J., Peavey D. G. Growth rate influence on the chemical composition in phytoplankton in oceanic waters. Nature, 1979, vol. 279, pp. 210–214.

39. Kiorboe T. Phytoplankton growth rate and nitrogen content: implications for feeding and fecundity in a herbivorous copepod. Marine Ecology Progress Series, 1989, vol. 55, pp. 229–234.

40. Cowles T. J., Olson R. J., Chisholm S. W. Food selection by Copepods: discrimination on the basis of food quality. Marine Biology, 1988, vol. 100, pp. 41–49.

41. Omori M. Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. Marine Biology, 1969, no. 3, pp. 4–10.

42. Malej A., Faganelli J., Pezdi J. Stable isotope and biochemical fractionation in the marine pelagic food chain: the jellyfish Pelagia noctiluca and net zooplankton. Journal of Marine Biology, 1993, vol. 116, pp. 565–570.

43. Hall S. R., Leibold M. A., Lytle D. A., Smith V. H. Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk. Ecology, 2004, vol. 85, pp. 2291–2301.

44. Frost P. C. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters, 2006, vol. 9, no. 7, pp. 774–779.

45. Frost P. C., Elser J. J. Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 2002, no. 5, pp. 232–240.

46. Steinman A. D. Effects of grazers on freshwater benthic algae. Algal ecology freshwater benthic ecosystems, Stevenson R. J., Bothwell M. L., Lowe R. L. (et al.). San Diego, 1996, pp. 341–373.


Review

Views: 560


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)