Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

ANALYSIS OF MICROSATELLITE LOCI VARIABILITY RIBES L. REPRESENTATIVES GROWN IN BELARUS

Abstract

The study of the genetic diversity of 86 representatives of the genus Ribes cultivated in Belarus using 8 SSR markers was held. It is shown that the varieties of black currant, red currant and gooseberry grown in Belarus, is characterized by high diversity of microsatellite loci. The average number of alleles per locus among the 86 samples was 12.1. The average number of unique genotypes per marker was 26.4. The value of discriminatory power for all markers was high with average number 0.8. Samples belonging to different species formed distinct clusters in the dendrogram of phylogenetic similarity. Genetically closest to black currant were josta, Golden currant, Alpine currant. At a greater genetic distance were red currants. Varieties of gooseberries form a cluster that is most distant from currant species. Analysis of alleles distribution at the investigated loci of microsatellite sequences revealed that red currant and gooseberry varieties have different SSR-alleles from black currant varieties. The number of alleles detected only for red currant and gooseberry varieties ranged from 1 (loci g2-G12, g1-M0) to 5 (locus E4D03). Based on the analysis of SSR-locus polymorphism, a set of 8 markers was generated that allow DNA-identification of Ribes genotypes. For selection the set of markers the level of information value for each marker, the frequency of alleles occurrence and convenience of visualization and analysis of amplification products were taken into account. The method of SSR-analysis with using specified set of markers can be successfully applied for identification of black currant, red currant and gooseberry varieties at the molecular level.

About the Authors

O. A. Mezhnina
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
Junior researcher


O. Yo. Urbanovich
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
D. Sc. (Biol.), Head of the Laboratory


References

1. Brennan R. M. Currants and gooseberries. Temperate fruit crop breeding: germplasm to genomics, in J. F. Hancock (ed.), Springer Netherlands, 2008, chapter 6, pp. 177–196. doi:10.1007/978-1-4020-6907-9.

2. Weigend M., Mohr O., Motley T. J. Phylogeny and classification of the genus Ribes (Grossulariaceae) based on 5S-NTS sequences and morphological and anatomical data. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 2002, vol. 124, pp. 163–182.

3. Cronquist A. The evolution and classification of flowering plants. New York: The New York Botanical Garden, 1988, p. 555.

4. Sinnot Q. P. A reversion of Ribes L. Subg. Grossularia (Mill.) pers. sect. Gros-sularia (Mill. Nutt. (Grossulariaceae) in North America. Rhodora, 1985, vol. 87, pp. 198–286.

5. Chiche J., Brown S. C., Leclerc J.-C., Siljak-Yakovlev S. Genome size, heterocromatin organisation, and ribosomal gene mapping in four species of Ribes. Canadian Journal of Botany, 2003, vol. 81, no. 11, pp. 1049–1057. doi: 10.1139/b03-088.

6. Lanham P. G., Korycinska A., Brennan R. M. Genetic diversity within a secondary pool for Ribes nigrum L. revealed by RAPD and ISSR markers. The Journal of Horticultural Science and Biotechnology, 2000, vol. 75, pp. 371–375.

7. Lanham P., Brennan R. M., McNicol R. J. Fingerprinting of blackcurrant (Ribes nigrum L.) cultivars using RAPD analyses. Theoretical and Applied Genetics, 1995, vol. 90, pp. 166–172.

8. Graham J., McNicol R. J., Greig K., Van de Ven W. T. G. Identification of red raspberry cultivars and an assessment to their relatedness using fingerprintings produced by random primers. The Journal of Horticultural Science, 1994, vol. 69, pp. 123–130.

9. Klein-Lankhorst R. M., Vermunt A., Weide R., Liharska T., Zabel P. Isolation of molecular markers for tomato (L. esculentum) using random amplified polymorphic DNA (RAPD). Theoretical and Applied Genetics, 1991, vol. 83, pp. 108–114. doi:10.1007/BF00229232.

10. Moreno S., Gogorcena Y., Ortiz J. M. The use of RAPD markers for identification of cultivated grapevine (Vitis vinifera L.). Scientia Horticulturae, 1995, vol. 62, no. 4, pp. 237–243.

11. Paran I., Kesseli R., Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance in lettuce using near-isogenic lines. Genome, 1991, vol. 34, pp. 1021–1027.

12. Meunier J. R., Grimont P. A. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Research in Microbiology, 1993, vol. 144, pp. 373–379.

13. Korbin M., Kuras A., Zurawicz E. Fruit plant germplasm characterisation using molecular markers generated in RAPD and ISSR-PCR. Cellular and Molecular Biology Letters, 2002, vol. 7, pp. 785–794.

14. Lanham P. G., Brennan R. M. Genetic characterization of gooseberry (Ribes subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers. The Journal of Horticultural Science and Biotechnology, 1999, vol. 74, no. 3, pp. 361–366.

15. Urbanovich О. Yu. Molecular markers for identification and genotyping of apple and pear. Minsk, Pravo i ekonomika [Law and Economics], 2013. 210 p. (in Russian).

16. Brennan R. M., Gordon S. L. Future perspectives in black currant breeding. Acta Horticulturae, 2002, vol. 585, pp. 39–45.

17. Cavanna M., Marioni D. T., Beccaro G. L., Bounous G. Microsatellite-based evaluation of Ribes spp. Germplasm. Genome, 2009, vol. 52, no. 10, pp. 839–848. doi:10.1139/g09-057.

18. Cavanna M., Bounous G., Botta R. Genetic diversity in ancient apple germplasm from northwest Italy. The Journal of Horticultural Science and Biotechnology, 2008, vol. 83, no. 5, pp. 549–554.

19. Boccacci P., Akkak A., Botta R. DNA typing and genetic relations among European hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Genome, 2006, vol. 49, no. 6, pp. 598–611.

20. Marulanda M. L., Lopez A. M., Aguilar S. B. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breeding and Applied Biotechnology, 2007, vol. 7, pp. 242–252.

21. Graham J., Woodhead M., Smith K., Russell J., Marshall B., Ramsay G., Squire G. New insight into wild red raspberry populations using simple sequence repeat markers. The Journal of the American Society for Horticultural Science, 2009, vol. 134, pp. 109–119.

22. Palmieri L., Grando M. S., Sordo M., Grisenti M., Martens S., Giongo L. Establishment of molecular markers for ger mplasm management in a worldwide provenance Ribes spp. collection. Plant Omics, 2013, vol. 6, no. 3, pp. 165–174.

23. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 1979, vol. 76, pp. 5269–5273.

24. Van de Peer Y., Wachter de R. TREECON: a software package for the construction and drawing of evolutionary trees. Computer Applications in the Biosciences, 1993, vol. 9, pp. 177–182.

25. Nei M., Roychoudhury A. K. Sampling variances of heterozygosity and genetic distance. Genetics, 1974, vol. 76, pp. 379–390.

26. Kloosterman A. D., Budowle B., Daselaar P. PCR-amplification and detection of the human DIS 80 VNTR locus. Amplification condition, population genetics and application in forensic analysis. The International Journal of Legal Medicine, 1993, vol. 105, pp. 257–264.

27. Pikunova А. V., Knyazev S. D., Bakhotskaya А. Yu., Kochumova А. А. Microsatellite loci polymorphism in Russian black currant (Ribes nigrum L.) varieties from collection of All-Russian Research Institute of Breading Fruit Crops. Agricultural Biology, 2015, vol. 50, no. 1, pp. 46–54. doi: 10.15389/agrobiology.2015.1.46eng.

28. Mezhnina О. А., Urbanovich О. Yu. Study of genetic variability of blaccurrant varieties (Ribes nigrum) grown in Belarus. Vestsі Natsyianal’nai akademіі navuk Belarusi. Seryia biialagіchnykh navuk [Proceedings of the National Academy of Science of Belаrus. Biological series], 2017, no. 1, pp. 62–69. (in Russian).


Review

Views: 582


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)