Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Nanophytophysiology is one of the important directions of modern biology

Abstract

Different physiological and biochemical processes mediated by nanoparticles in plants are reviewed. It can be concluded that the morphological and physiological characteristics of plants (the presence of polysaccharides of the cell wall, vacuole, the root system, photosynthesis, mineral nutrition, water exchange) could provide some specific interactions nanoparticles with plant organisms. It is very important to mark out plant nanophysiology (nanophytophysiology) as a significance branch of nanobiology.

About the Authors

V. M. Yurin
Belarusian State University
Belarus


O. V. Molchan
V. F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus


References

1. Балоян, Б. М Наноматериалы. Классификация, особенности свойств, применение и технологии получения / Б. М. Балоян // Междунар. университет природы, общества и человека. - М., 2007. - 124 с.

2. Макаров, Д. В. Экологическая опасность нанопорошков / Д. В. Макаров // Вестн. КРАУНЦ. Физ.-мат. науки. -2013. - № 1 (6). - C. 73-79.

3. Dugan, L. L. Carboxyfullerenes as neuroprotective agents / L. L. Dugan // Proc. Natl. Acad. Sci. USA. - 1997. -Vol. 94. - P. 9434-9439.

4. Dugan, L. L. Fullerene based antioxidants and neurodegenerative disorders / L. L. Dugan // Parkinson Relat Disord. -2001. - Vol. 7. - P. 243-246.

5. Husen, A. Carbon and fullerene nanomaterials in plant system / A. Husen // J. of Nanobiotechnol. - 2014. - Vol. 12. - P. 16.

6. Torre-Roche, R. D. L. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants / R. D. L. Torre-Roche // Environ. Sci. Technol. - 2013. - Vol. 47. -P. 12539-12547.

7. Kole, C. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia) / C. Kole // BMC Biotechnol. - 2013. - Vol. 13. -P. 37.

8. Ling, Y. Растения способны накапливать наночастицы в тканях / Y. Ling, D. Yatts // URL: http://pronano.ru/index. phpoption=com_content&task.

9. Нанотехнологии и наноматериалы в агропромышленном комплексе / В. Ф. Федоренко [и др.]. - М.: Росинформагротех, 2011. - 312 с.

10. Андрусишина, И. Н. Наночастицы металлов: способы получения, физико-химические свойства, методы исследования и оценка токсичности / И. Н. Андрусишина // Сучасні проблемы токсикологи. - 2011. - № 3. - С. 5-14.

11. Ling, Y. Particle surface characteristics may play an important role in phytotoxicity of aluminia nanoparticles / Y. Ling, D. Yatts // Toxicol. Lett. - 2005. - Vol. 158. - P. 122-132.

12. Lin, D. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth // Environ. Polluts. - 2007. -Vol. 150. - P. 243-250.

13. Yatts, D. Nanoparticles could have a negative effect on plant growth / D. Yatts, Y. Ling // Nanotechnol. News. - 2007. -N 3. - P. 86-92.

14. Differential cytotoxicity exhibited by silica nanowires and nanoparticles / A. Adili [et al.] // Nanotoxicology. - 2008. -Vol. 2, iss. 1. - P. 1-8.

15. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants / H. Zhu [et al.] // J. Environ. Monitoring. - 2008. - N 10. - P. 713-717.

16. Райкова, А. П. Исследование влияния ультрадисперсных порошков металлов, полученных различными способами, на рост и развитие растений / А. П. Райкова, Л. А. Паничкин, Н. Н. Райкова // Нанотехнологии и информационные технологии - технологии XXI века: материалы Междунар. науч.-практ. конф. - М., 2006. - С. 108-111.

17. Влияние наночастиц диоксида титана и оксида алюминия на морфофизиологические показатели растений / Т. П. Астафурова [и др.] // Вестн. Томск. гос. ун-та. Биология. - 2011. - № 1 (13). - С. 113-122.

18. Hernandez-Viezcas, J. A. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max) / J. A. Hernandez-Viezcas // ACS Nano. - 2013. - Vol. 7 (2). - P. 1415-1423.

19. Лебедев, С. В. Оценка влияния наночастиц железа Fe0, наночастиц магнетита Fe3O4 и сульфата железа (II) FeSO4 на содержание фотосинтетических пигментов Triticum vulgare / С. В. Лебедев, А. М. Короткова, Е. А. Осипова // Физиол. раст. - 2014. - Т. 61, № 4. - С. 108-111.

20. Thul, S. T Nanotechnology in agroecosystem: implications on plant productivity and its soil environment / S. T. Thul [et al.] // Expert Opin. Environ. Biol. - 2013. - Vol. 2. - P. 1-7.

21. Effects of functionalized and non functionalized single-walled carbon nanotubes on root elongation of select crop species / J. E. Canas [et al.] // Environ. Toxicol. Chem. - 2008. - Vol. 27. - P. 1922-1931.

22. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth / M. V. Khodakovskaya [et al.] // ACS Nano. - 2009. - Vol. 3. - P. 3221-3227.

23. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community / M. V. Khodakovskaya [et al.] // Small. - 2013. - Vol. 14. - P. 115-123.

24. Uptake, translocation, and transmission of carbon nanomaterials in rice plants / S. Lin [et al.] // Small. - 2009. - Vol. 5. - P. 1128-1132.

25. Wild, E. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants / E. Wild, K. C. Jones // Environ. Sci. Technol. - 2009. - Vol. 43. - P. 5290-5294.

26. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect / A. Mondal [et al.] // Nanopart. Res. - 2011. - Vol. 13. - P. 4519-4528.

27. Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings / S. Elena [et al.] // Fron. Chem. Sci. Eng. - 2012. - Vol. 6. - P. 132-138.

28. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake / P. Miralles [et al.] // J. Soc. Interf. - 2012. -Vol. 9. - P. 3514-3527.

29. Tan, X. M. Studies on toxicity of multiwalled carbon nanotubes on suspension rice cells / X. M. Tan, C. Lin, B. Fugetsu // Carbon. - 2009. - Vol. 47. - P. 3479-3487.

30. Perez-de-Luque, A. Nanotechnology for parasitic plant control / A. Perez-de-Luque, D. Rubiales // Pest Manag. Sci. -2009. - Vol. 65. - P. 540-545.

31. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia) / C. Kole [et al.] // BMC Biotechnol. - 2013. - Vol. 13. - P. 37.

32. Carbon nanotubes as molecular transporters for walled plant cells / Q. Liu [et al.] // Nano Lett. - 2009. - Vol. 9. -P. 1007-1010.

33. Endocytosis, actin cytoskeleton, and signaling / J. Samaj [et al.] // Plant Physiol. - 2004. - Vol. 135. - P. 1150-1160.

34. Nanoparticulate material delivery to plants / R. Nair [et al.] // Plant Sci. - 2010. - N 179. - P. 163-164.

35. Биотестирование наноматериалов: о возможности транслокации наночастиц в пищевые сети / Ю. Н. Моргалев [и др.] // Рос. нанотехнологии. - 2010. - Т. 5, № 11. - С. 131-135.

36. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview / A. Kahru [et al.] // Sensors. -2008. - Vol. 8. - P. 5153-5170.

37. Engineered Tobacco mosaic virus mutants with distinct physical characteristics in planta and enhanced metallization properties / A. Kadri [et al.] // Virus Res. - 2011. - Vol. 157. - P. 35-46.

38. Virus templated metallic nanoparticles / A. A. Aljabali [et al.] // Nanoscale. - 2010. - Vol. 2. - P. 2596-2600.

39. Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth / S. Shiv Shankar [et al.] // J. Colloid Inter. Sci. - 2004. - Vol. 275. - P. 496-502.

40. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum canphora leaf / J. Huang [et al.] // Nanotechnology. - 2007. - Vol. 18. - P. 1-11.

41. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract / P. S. Chandra [et al.] // Biotechnol. Prog. - 2006. - Vol. 22. - P. 577-583.


Review

Views: 581


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)