Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Alterations in expression of stress-responsive genes in Arabidopsis thaliana (L.) Heynh. roots induced by toxic Ni2+ levels and joint application of Ni2+ and L-histidine

https://doi.org/10.29235/1029-8940-2025-70-4-304-315

Abstract

Nickel (Ni) is an essential trace element for higher plants, being a part of urease, glyoxylases and hydrogenases. However, in high concentrations, this metal exerts a pronounced toxic effect. Levels of Ni2+ that are toxic to plants (>10–5 M) are typical for soils formed from volcanic rocks, near mining and metallurgical plants, landfills, waste disposal sites. Elevated nickel levels are also recorded in the soils of Belarus. In the presented work, we examined the effect of a range of toxic Ni2+ concentrations (0.3–2 mM NiCl2) on the expression of a number of important stress response genes in model plants Arabidopsis thaliana (L.) Heynh., as well as the effect of a natural plant protective agent, L-histidine (His), which is intensively synthesized by plants under nickel stress and is able to bind Ni2+, on this process. In the experiments conducted using the Real-Time Polymerase Chain Reaction (RT-PCR) method, it was found that the introduction of Ni2+ into the culture medium caused a dose-dependent increase in the relative expression of genes encoding glutathione reductase (GR1), NADPH oxidase (RBOHC), Ca2+-dependent protein kinase (CPK6), catalase (CAT2) and outward-rectifying K+ channel (GORK1). The maximum increase was observed upon treatment with 2 mM Ni2+, relative transcript levels were 5.9, 5.0, 3.0, 2.8 and 2.2 times higher than in control for RBOHC, GR1, CPK6, CAT2 and GORK1 respectively. In the case of the genes encoding poly(ADP-ribose)-polymerase (PARP1), cyclin B2 (CYCB2), and Cu/Zn-superoxide dismutase (CSD2), the transcript levels increased at low Ni2+ concentrations and then decreased at higher Ni2+ concentrations in the medium. The introduction of His, in conjunction with Ni2+, prevented the Ni2+-induced change in gene expression. Thus, it was demonstrated that A. thaliana plants respond to excess Ni2+ by inducing the expression of enzymatic antioxidants, proteins involved in redox- and Ca2+-mediated cellular signaling. This response is accompanied by alterations in the systems of control cell division and DNA replication, which can be regulated by exogenous His.

About the Authors

V. S. Mackievic
Belarusian State University
Belarus

Viera S. Mackievic – Senior Lecturer, Researcher, Belarusian State University.

4, Nezavisimosti Ave., 220030, Minsk



V. V. Demidchik
V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Vadim V. Demidchik – Corresponding Member, D. Sc. (Biol.), Professor, Chief Researcher, V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus.

27, Akademicheskaya Str., 220072, Minsk



References

1. Bergmann W. Nutritional Disorders of Plants: Development, Visual and Analytical Diagnosis. Stuttgart, Gustav Fischer Verlag, 1992. 741 p.

2. Nagajyoti P. C., Lee K. D., Sreekanth T. V. M. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 2010, vol. 8, no. 3, pp. 199–216. http://doi.org/10.1007/s10311-010-0297-8

3. Barker A. V., Pilbeam D. J. Handbook of Plant Nutrition. 2nd ed. Boca Raton, CRC Press, 2015. 773 p.

4. Shahzad B., Tanveer M., Rehman A., Cheema S. A., Fahad S., Rehman S., Sharma A. Nickel; whether toxic or essential for plants and environment – A review. Plant Physiology and Biochemistry, 2018, vol. 132, pp. 641–651. https://doi.org/10.1016/j.plaphy.2018.10.014

5. Dalir N., Khoshgoftarmanesh A. H. Root uptake and translocation of nickel in wheat as affected by histidine. Journal of Plant Physiology, 2015, vol. 184, pp. 8–14. https://doi.org/10.1016/j.jplph.2015.05.017

6. Matskevich V. S., Demidchik V. V. Mechanism of transmembrane and long-distance transport of nickel in higher plants. Eksperimental’naya biologiya i biotekhnologiya [Experimental Biology and Biotechnology], 2023, no. 2, pp. 4–29 (in Russian).

7. Welch R. M., Graham R. D. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 2004, vol. 55, no. 396, pp. 353–364. https://doi.org/10.1093/jxb/erh064

8. Gromadskaya E. I., Tsublenok D. V., Vodeiko M. V., Buko I. Yu., Khomich V. S., Zhivnach S. G., Struk M. I. State of the natural environment of Belarus: ecological bulletin. Minsk, RUE “TsNIIKIVR”, 2024. 196 p. (in Russian).

9. Loginov V. F. (ed.). State of the natural environment of Belarus: ecological bulletin. 2013. Minsk, Institute of Nature Management of the National Academy of Sciences of Belarus, 2014. 361 p. (in Russian).

10. Tolkach G. V., Poznyak S. S. Contents of chemical elements in soil in the farms of Brest region. Ekologicheskii vestnik [Ecological Bulletin], 2015, no. 3, pp. 79–88 (in Russian).

11. Gromadskaya E. I., Tsublenok D. V., Vodeiko M. V., Khomich V. S., Zhivnach S. G., Struk M. I. State of the natural environment of Belarus: ecological bulletin. Minsk, Central research institute for integrated use of water resources, 2023. 151 p. (in Russian).

12. Lemutova M. I. (ed.). National environmental monitoring system in the Republic of Belarus: observation results, 2021. Minsk, Belhydromet, 2022. 556 p. (in Russian).

13. Marschner H. Mineral nutrition of higher plants. 3rd ed. London, Academic Press, 2012. 684 p.

14. Alfalahi A. O., Abdulqahar F. W. Nanonutrients: Plant Nutritive and Possible Antioxidant Regulators. Nanobiotechnology, Cham, 2021, ch. 21, pp. 471–498. https://doi.org/10.1007/978-3-030-73606-4_21

15. Hanikenne M., Nouet C. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Current Opinion in Plant Biology, 2011, vol. 14, no. 3, pp. 252–259. https://doi.org/10.1016/j.pbi.2011.04.003

16. Tsadilas C., Rinklebe J., Selim M. (eds.). Nickel in Soils and Plants. Boca Raton, CRC Press, 2018. 432 p. https://doi.org/10.1201/9781315154664

17. Matskevich V. S., Shiker A. A., Zvonarev S. N., Litskevich K. S., Turovets O. A., Smolich, I. I., Sokolik A. I., Demidchik V. V. Growth inhibition and induction of programmed cell death in the root of Helianthus annuus L. triggered by nickel ions and nickel-histidine complexes. Zhurnal Belorusskogo gosudarstvennogo universiteta. Biologiya [Journal of the Belarusian State University. Biology], 2020, no. 1, pp. 11–19 (in Russian).

18. Mackievic V., Li Y., Hryvusevich P., Svistunenko D., Seregin I., Kozhevnikova A., Kartashov A. [et al.]. L-histidine makes Ni2+ ‘visible’ for plant signalling systems: Shading the light on Ni2+-induced Ca2+ and redox signalling in plants. Plant Physiology and Biochemistry, 2025, vol. 220, art. 109227. https://doi.org/10.1016/j.plaphy.2024.109227

19. Helaoui S., Boughattas I., Hattab S., Mkhinini M., Alphonse V., Livet A., Bousserrhine N., Banni M. Physiological, biochemical and transcriptomic responses of Medicago sativa to nickel exposure. Chemosphere, 2020, vol. 249, art. 126121. https://doi.org/10.1016/j.chemosphere.2020.126121

20. Agrawal B., Czymmek K. J., Sparks D. L., Bais H. P. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale. Journal of Biological Chemistry, 2013, vol. 288, no. 10, pp. 7351‒7362. https://doi.org/10.1074/jbc.M112.406645

21. Yemets A., Horiunova I., Blume Y. Cadmium, nickel, copper, and zinc influence on microfilament organization in Arabidopsis root cells. Cell Biology International, 2021, vol. 45, no, 1, pp. 211‒226. https://doi.org/10.1002/cbin.11485

22. Lešková A., Zvarík M., Araya T., Giehl R. F. H. Nickel Toxicity Targets Cell Wall-Related Processes and PIN2-Mediated Auxin Transport to Inhibit Root Elongation and Gravitropic Responses in Arabidopsis. Plant Cell Physiology, 2020, vol. 61, no. 3, pp. 519‒535. https://doi.org/10.1093/pcp/pcz217

23. Czechowski T., Stitt M., Altmann T., Udvardi M. K., Scheible W. R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 2005, vol. 139, no. 1, pp. 5‒17. https://doi.org/10.1104/pp.105.063743

24. Vanhoudt N., Vandenhove H., Horemans N., Wannijn J., Van Hees M., Vangronsveld J., Cuypers A. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana. Journal of Environmental Radioactivity, 2010, vol. 101, no. 11, pp. 923–30. https://doi.org/10.1016/j.jenvrad.2010.06.008

25. Boudsocq M., Willmann M. R., McCormack M., Lee H., Shan L., He P., Bush J., Cheng Sh.-H., Sheen J. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature, 2010, vol. 464, no. 7287, pp. 418–22. https://doi.org/10.1038/nature08794

26. Seregin I. V., Kozhevnikova A. D. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 2006, vol. 53, no. 2, pp. 257–277. https://doi.org/10.1134/S1021443706020178

27. Riyazuddin R., Nisha N., Ejaz B., Khan M. I. R., Kumar M., Ramteke P. W., Gupta R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules, 2021, vol. 12, no. 1, art. 43. https://doi.org/10.3390/biom12010043

28. Krämer U., Cotter-Howells J. D., Charnock J. M., Baker A. J. M., Smith J. A. C. Histidine as a metal chelator in plants that accumulate nickel. Nature, 1996, vol. 379, no. 6566, pp. 635‒638. https://doi.org/10.1038/379635a0

29. Ingle R. A., Mugford S. T., Rees J. D., Campbell M. M., Smith J. A. C. Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator Plants. Plant Cell, 2005, vol. 17, no. 7, pp. 2089‒2106. https://doi.org/10.1105/tpc.104.030577

30. Demidchic, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 2015, vol. 109, pp. 212-228. https://doi.org/10.1016/j.envexpbot.2014.06.021

31. Foreman J., Demidchik V., Bothwell J. H. F., Mylona P., Miedema H., Torres M. A., Linstead P., Costa S., Brownlee C., Jones J. D. G., Davies J. M., Dolan L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003, vol. 422, no. 6930, pp. 442–446. https://doi.org/10.1038/nature01485

32. Demidchik V., Straltsova D., Medvedev S. S., Pozhvanov G. A., Sokolik A., Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 2014, vol. 65, no. 5, pp. 1259–1270. https://doi.org/10.1093/jxb/eru004

33. Ma Q., Zhao Ch., Hu Sh., Zuo K. Arabidopsis calcium-dependent protein kinase CPK6 regulates drought tolerance under high nitrogen by the phosphorylation of NRT1.1. Journal of Experimental Botany, 2023, vol. 74, no. 18, pp. 5682–5693. https://doi.org/10.1093/jxb/erad277

34. Cohen A., Hacham Y., Welfe Y., Khatib S., Avice J.-Ch., Amir R. Evidence of a significant role of glutathione reductase in the sulfur assimilation pathway. The Plant Journal, 2020, vol. 102, no. 2, pp. 246–261. https://doi.org/10.1111/tpj.14621

35. Lee J., Das A., Yamaguchi M., Hashimoto J., Tsutsumi N., Uchimiya H., Umeda M. Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. The Plant Journal, 2003, vol. 34, no. 4, pp. 417–425. https://doi.org/10.1046/j.1365-313x.2003.01736.x

36. Hafsi C., Collado-Arenal A. M., Wang H., Sanz-Fernández M., Sahrawy M., Shabala S., Romero-Puertas M. C., Sandalio L. M. The role of NADPH oxidases in regulating leaf gas exchange and ion homeostasis in Arabidopsis plants under cadmium stress. Journal of Hazardous Materials, 2022, vol. 429, art. 128217. https://doi.org/10.1016/j.jhazmat.2022.128217

37. Jozefczak M., Remans T., Vangronsveld J., Cuypers A. Glutathione Is a Key Player in Metal-Induced Oxidative Stress Defenses. International Journal of Molecular Sciences, 2012, vol. 13, no. 3, pp. 3145–3175. https://doi.org/10.3390/ijms13033145

38. Mhamdi A., Hager J., Chaouch S., Queval G., Han Y., Taconnat L., Saindrenan P., Gouia H., Issakidis-Bourguet E., Renou J. P., Noctor G. Arabidopsis GLUTATHIONE REDUCTASE1 Plays a Crucial Role in Leaf Responses to Intracellular Hydrogen Peroxide and in Ensuring Appropriate Gene Expression through Both Salicylic Acid and Jasmonic Acid Signaling Pathways. Plant Physiology, 2010, vol. 153, no. 3, pp. 1144–1160. https://doi.org/10.1104/pp.110.153767

39. Grill E., Winnacker E.-L., Zenk M. H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 1985, vol. 230, no. 4726, pp. 674–676. https://doi.org/10.1126/science.230.4726.674

40. Chen J., Zhou J., Goldsbrough P. B. Characterization of phytochelatin synthase from tomato. Physiologia Plantarum, 1997, vol. 101, no. 1, pp. 165–172. https://doi.org/10.1111/j.1399-3054.1997.tb01833.x


Review

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)