Effect of Chit osan–Hydroxycinnamic Acid Conjugates on the growth and development of cucumber plants (Cucumis sativus L.) under soil salinity conditions
https://doi.org/10.29235/1029-8940-2025-70-3-253-264
Abstract
The present study investigates the impact of lyophilized chitosan conjugates with ferulic (Сh30-FA) and caffeic (Ch30-CA) acids on the morphometric and biochemical parameters of a cucumber plant (Cucumis sativus L.) Malyshok variety cultivated prior to the onset of fruit development under sodium chloride salinity conditions. The seeds and plants were treated with conjugate solutions during the stage of first true leaf appearance. The creation of soil salinization conditions involved the soil application of sodium chloride solution. The results demonstrated that treatment with conjugates, particularly Ch30-CA, enhanced plant growth during the process of leaf development and formation of lateral shoots under optimal conditions. Additionally, it facilitated the plants adaptation to salt stress by increasing proline levels and maintaining water balance in the leaves. The application of Chitosan–Hydroxycinnamic Acid Conjugates has been demonstrated to stimulate cucumber plant growth under both optimal and stressful conditions, thereby accelerating the transition to the generative phase of development. Furthermore, the application of Ch30-CA and Ch30-FA has been demonstrated to mitigate the sodium chloride salt stress experienced by cucumber plants. The inhibition of reactive oxygen species formation and the maintenance of plasma membrane integrity, as evidenced by low levels of electrolyte leakage from cucumber plant leaf cells and low proline content during fruit development, were also demonstrated.
About the Authors
I. A. OvchinnikovBelarus
Igor A. Ovchinnikov –Researcher, Postgraduate Student
27, Akademiches- kaya Str., 220072, Minsk
J. N. Kalatskaja
Belarus
Joanna N. Kalatskaja – Ph. D. (Biol.), Associate Professor, Deputy Director for Scientific and Innovative Work, Leading Researcher
27, Akademiches- kaya Str., 220072, Minsk
V. V. Nikalaichuk
Belarus
Viktoria V. Nikalaichuk – Researcher, postgraduate student
36, F. Skоryna Str., 220141, Minsk
K. S. Hileuskaya
Belarus
Kseniya S. Hileuskaya – Ph. D. (Chem.), Associate Professor, Leading Researcher
36, F. Skоryna Str., 220141, Minsk
I. M. Morozova
Belarus
Inna M. Morozova – Ph. D. (Biol.), Associate Professor, Associate Professor of the Department
33, Moskovsky Ave., 210038, Vitebsk
References
1. van Zelm E., Zhang Y., Testerink C. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 2020, vol. 71, pp. 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
2. Lee G., Carrow R. N., Duncan R. R., Eiteman M. A., Rieger M. W. Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 2008, vol. 63, no. 1–3, pp. 19–27. https://doi.org/10.1016/j.envexpbot.2007.10.009
3. Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora – Morphology, Distribution, Functional Ecology of Plants, 2004, vol. 199, no. 5, pp. 361–376. https://doi.org/10.1078/0367-2530-00165
4. Slama I., Abdelly C., Bouchereau A., Flowers T., Savoure A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 2015, vol. 115, no. 3, pp. 433–447. https://doi.org/10.1093/aob/mcu239
5. Sharma P., Jha A. B., Dubey R. S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, vol. 2012, art. 217037. https://doi.org/10.1155/2012/217037
6. Varlamov V. P., Il’ina A. V., Shagdarova B. T., Lun’kov A. P., Mysyakina I. S. Chitin/сhitosan and its derivatives: fundamental and applied aspects. Uspekhi biologicheskoi khimii [Advances in Biological i Chemistry], 2020, no. 60, pp. 317–368 (in Russian).
7. Kulikov S. N., Chirkov S. N., Il’ina A. V., Lopatin S. A., Varlamov V. P. Effect of the molecular weight of chitosan on its antiviral activity in plants. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2006, vol. 42, no. 2, pp. 224–228 (in Russian).
8. Rayanoothalaa P. S., Dwehc T. J., Mahapatrab S., Kayasthac S. Unveiling the protective role of chitosan in plant defense: A comprehensive review with emphasis on abiotic stress management. Crop Design, 2024, vol. 3, no. 4, art. 100076. https://doi.org/10.1016/j.cropd.2024.100076
9. Hileuskaya A. E., Nikalaichuk V. V., Kraskouski A. N., Hileuskaya K. S., Kulikouskaya V. I., Kalatskaja J. N., Ned- ved’ E. L., Vialichka N. I., Laman N. A. Conjugates of chitosan with oxycinnamic acids: production, physicochemical characte ristics and assessment of their impact on the productivity and quality of radish. Prikladnaya biokhimya i mikrobiologiya = Applied Biochemistry and Microbiology, 2022, vol. 58, no. 2, pp. 195–205 (in Russian).
10. Mashentseva A. A., Seitembetov T. S. The study of the structure-activity relationship far a cinnamic acid derivatives. Zhurnal Sibirskogo federal’nogo universiteta. Seriya: Khimiya = Journal of Siberian Federal University. Chemistry, 2010, no. 3, pp. 183–192 (in Russian).
11. Ovchinnikov I. A., Minkova V. V., Gerasimovich K. M. Effect of oxycinnamic acids on the resistance of cucumber plants to low-temperature stress. Molodezh’ v nauke – 2019: agrarnye, biologicheskie, gumanitarnye, meditsinskie, fizikomatematicheskie, fiziko-tekhnicheskie nauki, khimiya i nauki o Zemle: tezisy dokladov XVI Mezhdunarodnoi konferentsii molodykh uchenykh (Minsk, 14–17 oktyabrya 2019 goda) [Youth in Science – 2019: Agricultural, Biological, Humanitarian, Medical, Physical and Mathematical, Physical and Technical Sciences, Chemistry and Earth Sciences: Abstracts of the XVI International Conference of Young Scientists (Minsk, October 14–17, 2019)]. Minsk, 2019, pp. 127–129 (in Russian).
12. Nedved’ E. L., Kalatskaja J. N., Ovchinnikov I. A., Rybinskaya E. I., Laman N. A., Kraskouski A. N., Nikalaichuk V. V., Hileuskaya K. S., Kulikouskaya V. I., Agabekov V. E. Growth parameters and antioxidant activity in cucumber sprouts using chitosan conjugates with hydroxycinnamic acids under salt stress conditions. Prikladnaya biokhimya i mikrobiologiya = Applied Biochemistry and Microbiology, 2022, vol. 58, no. 1, pp. 74–82 (in Russian).
13. Elovskaya N. A., Kalatskaya Zh. N., Laman N. A., Gilevskaya K. S., Kulikovskaya V. I., Nikolaichuk V. V. Stimulating effect of oxycinnamic acids and their conjugates with chitosan on the growth and biochemical parameters of potato microclones in vitro. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2022, vol. 66, no. 6, pp. 605–613 (in Russian).
14. Gerasimovich K. M., Rybinskaya E. I., Ovchinnikov I. A., Nedved’ E. L., Kalatskaya Zh. N., Gilevskaya K. S., Nikolaichuk V. V., Laman N. A. Effect of chitosan conjugates with hydroxycinnamic acids and their nanoparticles on the growth of barley seedlings and their proline content under salt stress. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2022, vol. 67, no. 3, pp. 263–273 (in Russian).
15. Elovskaya N. A., Kalatskaya Zh. N., Laman N. A., Nikolaichuk V. V., Kraskovskii A. N., Gilevskaya K. S. Caffeic acid in various formulations as a regulator of growth processes and resistance of potato microclones in vitro culture. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2023, vol. 59, no. 5, pp. 502–511 (in Russian). https://doi.org/10.31857/S0555109923050045
16. Meier U. Growth stages of mono-and dicotyledonous plants. Edinburgh, Federal Biological Research Centre for Agriculture and Forestry, 2001. 158 р.
17. Gonzalez L., Gonzalez-Vilar M. Determination of relative water content. Handbook of plant ecophysiology techniques. New York, 2003, pp. 207–212. https://doi.org/10.1007/0-306-48057-3_14
18. Dmitriev N. N., Khusnidinov Sh. K. Methodology for accelerated determination of leaf surface area of agricultural crops using computer technology. Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta [Bulletin of the Krasnoyarsk State Agrarian University], 2016, no. 7, pp. 88–93 (in Rusian).
19. Grishenkova N. N., Lukatkin A. S. Determination of plant tissue resistance to abiotic stress using the conductometric method. Povolzhskii ekologicheskii zhurnal [Volga Region Ecological Journal], 2005, no. 1, pp. 3–11 (in Russian).
20. Kumar G. N. M., Knowles N. R. Changes in Lipid Peroxidation and Lipolitic and Free-Radical Scavenging Enzyme Activities during Aging and Sprouting of Potato (Solanum tuberosum) Seed–Tubers. Plant Physiology, 1993, vol. 102, pp. 115–124. https://doi.org/10.1104/pp.102.1.115
21. Bates L. S. Waldren R. P., Teare I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973, vol. 39, no. 1, pp. 205–207. https://doi.org/10.1007/bf00018060
22. Hartmut K. L., Alan R. W. Determination of total and chlorophylls a and b of leaf extracts in different solvents. Biochemical society transactions, 1983, vol. 11, no. 5, pp. 591–592. https://doi.org/10.1042/bst0110591
23. Kraskouski A. Nikalaichuk V., Kulikouskaya V., Hileuskaya K., Kalatskaja J., Nedved H., Laman N., Agabekov V. Synthesis and properties of hydrogel particles based on chitosan-ferulic acid conjugates. Soft Materials, 2021, vol. 19, no. 4, pp. 495–502. https://doi.org/10.1080/1539445x.2021.1877726
24. Nikalaichuk V., Hileuskaya K., Kraskouski A., Kulikouskaya V., Nedved H., Kalatskaja J., Rybinskaya E., Herasimovich K., Laman N., Agabekov V. Chitosan-hydroxycinnamic acid conjugates: Synthesis, photostability and phytotoxicity to seed germination of barley. Journal of Applied Polymer Science, 2021, vol. 139, no. 14. P. e51884. https://doi.org/10.1002/app.51884
25. Grantz S. A. (ed.). Primer of Biostatistics. 7th. ed. New York, McGraw-Hill, 2011. 320 p.
26. Griusevich P. V., Samokhina V. V., Demidchik V. V. Stress-induced electrolyte leakage from root cells of higher plants: background, mechanism and physiological role. Eksperimental’naya biologiya i biotekhnologiya [Experimental biology and biotechnology], 2022, no. 2, pp. 4–18 (in Rusian).
27. Men’shchikova E. B., Lankin V. Z., Zenkov N. K., Bondar’ I. A., Krugovykh N. F., Trufakin V. A.Oxidative stress. Prooxidants and antioxidants. M.: Slovo Publ., 2006. 556 p. (in Russian).
28. Ziyatdinova G. K., Budnikov H. C. Natural phenolic antioxidants in bioanalytical chemistry: state of the problem and development prospects. Uspekhi khimii = Advances in Chemistry, 2015, vol. 84, no. 2, pp. 194–224. https://doi.org/10.1070/rcr4436
29. Rogozhin V. V., Verkhoturov V. V., Kurilyuk T. T. The Antioxidant System of Wheat Seeds during Germination. Izvestiya academii nauk. Seriya biologicheskaya [News of the Academy of scienses, biological series], 2001, no. 2, pp. 165–173.
30. Olenichenko N. A., Gorodkova E. S., Zagoskina N. V. Effect of exogenous phenolic compounds on lipid peroxidation in wheat plants. Sel’skokhozyaistvennaya biologiya [Agricultural biology], 2008, no. 3, pp. 58–61 (in Russian).
31. Attia M. S., Osman M. S., Mohamed A. S., Mahgoub H. A., Garada M. O., Abdelmouty E. S., Latef A. A. H. A. Impact of Foliar Application of Chitosan Dissolved in Different Organic Acids on Isozymes, Protein Patterns and PhysioBiochemical Characteristics of Tomato Grown under Salinity Stress. Plants (Basel), 2021, vol. 10, no. 2, pp. 388–411. https:// doi.org/10.3390/plants10020388
32. Rutairat P., Theerakarunwong C. D. Effect of chitosan on physiology, photosynthesis and bi-omass of rice (Oryza sativa L.) under elevated ozone. Australian Journal of Crop Science, 2017, vol. 11, no. 5, pp. 624–630. https://doi.org/10.21475/ajcs.17.11.05.p578
33. Makeeva I. Yu., Bychkov I. A. Specificity of the action of caffeic acid on photosynthetic activity and growth reactions of Solanum tuberosum. Proceedings of the International Youth Scientific Forum «LOMONOSOV-2015». Available at: https://lomonosov-msu.ru/archive/Lomonosov_2015/data/6952/uid68686_f7191eb4975b8f3ff78c0f817b5298524d8a5f6e.doc (accessed 16.05.2025) (in Russian).
34. Makeeva I. Yu., Puzina T. I. The Participation of caffeic acid in the regulation of physiological processes of potato plants under conditions of the hypothermia. Vestnik Orlovskogo gosudarstvennogo agrarnogo universiteta [Bulletin of the Oryol State Agrarian University], 2017, no. 1 (64), pp. 60–65 (in Russian).
35. Makeeva I. Yu. Physiological and biochemical responses of Solanum tuberosum to the action of caffeic acid. Abstract of Ph.D. diss. Moscow, 2017. 23 p. (in Russian).
36. Bakhoum G. S., Sadak M. S., Badr E. A. E. M Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre, 2020, vol. 44, art. 79. https://doi.org/10.1186/s42269-020-00343-7
37. Rakhmatullina N. Sh., Nasriddinova P. M., Akinshina N. G., Azizov A. A., Mirkhodzhaev U. Z. Adaptation of the photosynthetic apparatus of plants to salt stress. Nauchnoe obozrenie. Biologicheskie nauki [Scientific Review. Biological Sciences], 2022, no. 1, pp. 56–61 (in Russian).
38. Vainer A. A., Kolupaev E. Yu., Khripach V. A. Separate and combined effects of 24-epibrassinolide and proline on the antioxidant system of millet plants under salt stress. Fiziologiya rastenii i genetika [Plant Physiology and Genetics], 2014, vol. 46, no. 5, pp. 428–436 (in Russian).
39. Houimli S. M., Denden M., Mouhandes B. D. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian Journal of Biosciences, 2010, vol. 4, pp. 96–104.
40. Yildizli A., Çevik S., Ünyayar S. Effects of exogenous myo-inositol on leaf water status and oxidative stress of Capsicum annuum under drought stress. Acta Physiologiae Plantarum, 2018, vol. 40, art. 122. https://doi.org/10.1007/s11738-018-2690-z