Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Invasive plant species as promising sources of plant raw materials for creating biopesticides

https://doi.org/10.29235/1029-8940-2025-70-3-197-206

Abstract

The effect of aqueous plant extracts on the growth of test cultures exhibits a dependence on both the plant species and the con centration of the aqueous extract. Extracts obtained from various organs of invasive plant species primarily exert an inhibitory effect on the germination energy, germination and growth of test crop seedlings. The intensity of inhibition increases with the increasing extract concentration. With decreasing extract concentration, the inhibitory effect diminishes and tends to stimulate the germination processes of test crops. By varying the concentration of aqueous extracts obtained from invasive plant species and the type of plant material (rhizome, roots, rhizome, stem, leaves, inflorescences, seeds), it is possible to form biologically active preparations with specified properties (inhibitory, stimulating).

About the Author

V. N. Prokhorov
V. F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus
Belarus

Valery N. Prokhorov – Corresponding Member, D. Sc. (Biol.), Professor, Chief Researcher

27, Akademicheskaya Str., 220072, Minsk



References

1. Kareiva P. M., Marvier M. Conservation science: balancing the needs of people and nature. Colorado, USA, Roberts and Company Publishers, 2017. 672 p.

2. Verlaque M., Breton G. Biological invasion: Long term monitoring of the macroalgal flora of a major European harbor complex. Marine Pollution Bulletin, 2019, vol. 143, pp. 228–241. https://doi.org/10.1016/j.marpolbul.2019.04.038

3. Vinogradova Yu. K., Maiorov S. R., Khorun L. V. Black Book of Flora of Central Russia: Alien Plant Species in Ecosystems of Central Russia. Mosсow, GEOS Publ., 2010. 512 p. (in Russian).

4. McDowell W. G., Byers J. E. High abundance of an invasive species gives it an outsized ecological role. Freshwater Biology, 2019, vol. 64, no. 3, pp. 577–586. https://doi.org/10.1111/fwb.13243

5. Bertram, G. The impact of exotic pests on the New Zealand economy. Pests & weeds: a blueprint for action. New Zealand, 1999, pp. 45–71.

6. Diagne C., Leroy B., Vaissière A.-Ch., Gozlan R. E., Roiz D., Jarić I., Salles J.-M., Bradshaw C. J. A., Courchamp F. High and rising economic costs of biological invasions worldwide. Nature, 2021, vol. 592, pp. 571–576. https://doi.org/10.1038/s41586-021-03405-6

7. Blossey B., Nötzold R. Evolution of increased competitive ability in invasive non-indigenous plants: a hypothesis. The Journal of Ecology, 1995, vol. 83, no. 5, pp. 887–889. https://doi.org/10.2307/2261425

8. Grodzinskii A. M. Allelopathy in the life of plants and their communities: the basics of chemical interaction of plants. Kiev: Naukova Dumka Publ., 1965. 200 p. (in Russian).

9. Elton C. S. The ecology of invasions by plants and animals. London, Methuen, 1958. 181 p.

10. Inderjit, Callaway R. M., Vivanco J. M. Can plant biochemistry contribute to understanding of invasion ecology? Trends in Plant Science, 2006, vol. 11, no. 12, pp. 574–580. https://doi.org/10.1016/j.tplants.2006.10.004

11. Hierro J. L., Callaway R. M. Allelopathy and exotic plant invasion. Plant and Soil, 2003, vol. 256, no. 1, pp. 29–39. https://doi.org/10.1023/a:1026208327014

12. Zhang S., Zhu W., Wang B., Tang J., Chen X. Secondary metabolites from the invasive Solidago canadensis L. accumulation in soil and contribution to inhibition of soil pathogen Pythium ultimum. Applied Soil Ecology, 2011, vol. 48, no. 3, pp. 280–286. https://doi.org/10.1016/j.apsoil.2011.04.011

13. Glinwood R., Ninkovic V., Pettersson J. Chemical interaction between undamaged plants – Еffects on herbivores and natural enemies. Phytochemistry, 2011, vol. 72, no. 13, pp. 1683–1689. https://doi.org/10.1016/j.phytochem.2011.02.010

14. Cheng F., Cheng Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Frontiers in Plant Science, 2015, vol. 6, art. 1020. https://doi.org/10.3389/fpls.2015.01020

15. Delcour I., Spanoghe P., Uyttendaele M. Literature review: Impact of climate change on pesticide use. Food Research International, 2015, vol. 68, pp. 7–15. https://doi.org/10.1016/j.foodres.2014.09.030

16. Araniti F., Sunseri F., Abenavoli M. R. Phytotoxic activity and phytochemical characterization of Lotus ornithopodoides L., a spontaneous species of Mediterranean area. Phytochemistry Letters, 2014, vol. 8, pp. 179–183. https://doi.org/10.1016/j.phytol.2013.08.019

17. Yang R. Y., Mei L. X., Tang J. J., Chen X. Allelopathic effects of invasive Solidago canadensis L. on germination and growth of native Chinese plant species. Allelopathy Journal, 2007, vol. 19, no. 1, pp. 241–247.

18. Rice E. L. Allelopathy. New York, Academic press, 1984. 422 p.

19. Kakati B. A., Baruah Y. B. Allelopathic effect of aqueous extract of some medicinal plants on seed germination and seedling length of mung bean (Vigna radiata (L.) Wilczek.). Indian Journal of Plant Sciences, 2013, vol. 2, no. 3, pp. 8–11.

20. Kondrat’ev M. N., Larikova Yu. S., Davydova A. N. Secondary compounds of medicinal plants as a potential basis for creating bioherbicides. Voprosy biologicheskoi, meditsinskoi i farmatsevticheskoi khimii [Issues of biological, medical and pharmaceutical chemistry]. 2017, vol. 20, no. 5, pp. 36–40 (in Russian).

21. Javaid A., Shoaib A. Allelopathy for the management of phytopathogens. Allelopathy: current trends and future applications. Berlin, 2013, pp. 299–319.

22. Telitchenko M. M., Ostroumov S. A. Introduction to the problems of biochemical ecology: biotechnology, agriculture, environmental protection. M.: Nauka Publ., 1990. 288 p. (in Russian).

23. Langenheim J. H. Higher plant terpenoids: A phytocentric overview of their ecological roles. Journal of Chemical Ecology, 1994, vol. 20, no. 6, pp. 1223–1280. https://doi.org/10.1007/bf02059809

24. Bhowmik P. C. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Protection, 2003, vol. 22, no. 4, pp. 661–671.

25. Nimbal Ch. I., Yerkes C. N., Weston L. A., Weller S. C. Herbicidal Activity and Site of Action of the Natural Product Sorgoleone. // Pesticide Biochemistry and Physiology, 1996, vol. 54, no. 1, pp. 73–83. https://doi.org/10.1006/pest.1996.0011

26. Cheema Z. A., Khalig A. Use of sorghum alleopathic properties to control weeds in irrigated wheat in a semiarid region of Punjab. Agriculture, Ecosystems & Environment, 2000, vol. 79, no. 1–2, pp. 105–112https://doi.org/10.1016/s01678809(99)00140-1

27. Matos F. S., Furtado B. N., dos Santos M. R., Amorim V. A., Borges L. P. Biorational agriculture: Herbicidal activity of sorghum extract in control of Cyperus rotundus L. Magistra, 2021, vol. 31, pp. 675–682.

28. Cornes D. Callisto: a very successful maize herbicide inspired by allelochemistry. Proceedings of the 4th World Congress on Allelopathy: Establishing the Scientific Base, Wagga Wagga, New South Wales, Australia, 21–26 August 2005. Australia, 2005, pp. 569–572.

29. Lydon J., Teasdale J. R., Chen P. K. Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Science, 1997, vol. 45, no. 6, pp. 807–811. https://doi.org/10.1017/s0043174500089001

30. Guillon M. Herbicidal composition comprising an allelopathic substance and method of use thereof. European patent N 1110456A1. Nogueres, France, European Patent Office, 2003.

31. Ogata T., Hamachi M., Nishi K. Organic Herbicide for Paddy Field. Japan patent N 2008050329. Tokyo, Japan Patent Office, 2008.

32. Fujii Y., Parvez S. Sh., Parvez M. M., Ohmae Y., Iida O. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management, 2003, vol. 3, no. 4, pp. 233–241. https://doi.org/10.1046/j.1444-6162.2003.00111.x

33. Hpoo M. K., Mishyna M., Prokhorov V., Arie T., Takano A., Oikawa Y., Fujii Y. Potential of octanol and octanal from Heracleum sosnowskyi fruits for the control of Fusarium oxysporum f. sp. Lycopersici. Sustainability, 2020, vol. 12, no. 22, art. 9334. https://doi.org/10.3390/su12229334

34. Skorokhodova, A. N. Allelopathic effect of medicinal plants on weeds. Abstract of PhD thesis. M., 2019. 23 p. (in Russian).

35. Zhou J., Xu Zh., Zhong Sh., Yu Y., Xu Zh., Du D., Wang C. Nitrogen influence to the independent invasion and the Co-invasion of Solidago canadensis and Conyza canadensis via intensified allelopathy. Sustainability, 2022, vol. 14, no. 19, art. 11970. https://doi.org/10.3390/su141911970

36. Liu S., Hao X., Ei Y., U Ch., Ao J. Effect of essential oil of Solidago canadensis L.on the quality and physiology of postharvestberry fruits. Journal of Nuclear Agricultural Sciences, 2016, vol. 30, no. 10, pp. 1967–1975. https://doi.org/10.11869/j.issn.100-8551.2016.10.1967


Review

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)