Special aspects of structural and functional organization of the genome of Pseudomonas amygdali pv. lachrymans 8: a causative agent of angular leaf spot of cucumber
https://doi.org/10.29235/1029-8940-2025-70-2-135-145
Abstract
This article presents the results of the sequencing, molecular genetic and comparative analysis of the genome of the phytopathogenic bacterium Pseudomonas amygdali pv. lachrymans 8. The assembled genome sequence has been deposited in the GenBank database of the US National Center for Biotechnology Information (accession numbers: CP075686–CP075690). The calculation of the average nucleotide identity revealed that the genome sequence of strain 8 exhibits 99.87 and 99.79 % similarity with the genome sequences of bacteria P. amygdali pv. lachrymans 814/98 and P. amygdali pv. lachrymans M301315, respectively. The genome of strain 8 was found to be represented by a circular chromosome of 6,054,652 bp with a GC-pair content of 58.11 % and four circular plasmids: pPAL8-01 (77,748 bp, GC-pair content of 56 %), pPAL8-02 (72,398 bp, GC-pair content of 55 %), pPAL8-03 (49,000 bp, GC-pair content of 54 %) and pPAL8-04 (9,600 bp, GC-pair content of 55 %). It is suggested that the route of dissemination of the studied phytopathogen was either parallel from the Netherlands to the USA and Belarus, or first from the Netherlands to the USA and then to Belarus. A comparison of the nucleotide sequence of the strain 8 with the nucleotide sequences of the bacteria P. amygdali pv. lachrymans M301315, NM002 and YM7902 revealed significant genetic rearrangements and determined the localization of a unique region of 19,773 bp.
Keywords
About the Authors
A. A. MuratovaBelarus
Anna A. Muratova – Ph. D. (Biol.), Senior Researcher
2, Academician Kupre vich Str., 220084, Minsk
A. E. Akhremchuk
Belarus
Artur E. Akhremchuk – Researcher
2, Academician Kupre vich Str., 220084, Minsk
L. N. Valentovich
Belarus
Leonid N. Valentovich – Ph. D. (Biol.), Associate Profes- sor, Head of the Laboratory
2, Academician Kupre vich Str., 220084, Minsk
References
1. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov / J. Lalucat, M. Gomila, M. Mulet [et al.] // Systematic and Applied Microbiology. – 2022. – Vol. 45, N 1. – Art. 126289. https://doi.org/10.1016/j.syapm.2021.126289
2. Pseudomonas genomes: diverse and adaptable / M. W. Silby, C. Winstanley, S. A. C. Godfrey [et al.] // FEMS Microbiology Reviews. – 2011. – Vol. 35, N 4. – P. 652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.x
3. Multifaceted Impacts of Plant-Beneficial Pseudomonas spp. in Managing Various Plant Diseases and Crop Yield Improvement / N. Mehmood, M. Saeed, S. Zafarullah [et al.] // ACS Omega. – 2023. – Vol. 8, N 25. – P. 22296–22315. https://doi.org/10.1021/acsomega.3c00870
4. Höfte, M. Plant pathogenic Pseudomonas species / M. Höfte, P. De Vos // Plant-Associated Bacteria / ed. S. S. Gnanamanickam. – Dordrecht, 2006. – P. 507–533. https://doi.org/10.1007/978-1-4020-4538-7_14
5. Diggle, S. P. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat / S. P. Diggle, M. Whiteley // Microbiology (Reading). – 2020. – Vol. 166, N 1. – P. 30–33. https://doi.org/10.1099/mic.0.000860
6. Pseudomonas fluorescens Showing Antifungal Activity against Macrophomina phaseolina, a Severe Pathogenic Fungus of Soybean, Produces Phenazine as the Main Active Metabolite / S. Castaldi, M. Masi, F. Sautua [et al.] // Biomolecules. – 2021. – Vol. 11, N 11. – Art. 1728. https://doi.org/10.3390/biom11111728
7. Phytopathogenic Pseudomonas syringae as a Threat to Agriculture: Perspectives of a Promising Biological Control Using Bacteriophages and Microorganisms / P. Córdova, J. P. Rivera-González, V. Rojas-Martínez [et al.] // Horticulturae. – 2023. – Vol. 9, N 6. – Art. 712. https://doi.org/10.3390/horticulturae9060712
8. Schroth, M. N. Phytopathogenic Pseudomonads and Related Plant-Associated Pseudomonads / M. N. Schroth, D. C. Hildebrand, N. Panopoulos // The Prokaryotes: A Handbook on the Biology of Bacteria / eds.: M. Dworkin [et al.]. – 3rd ed. – New York, 2006. – Vol. 6: Proteobacteria: Gamma Subclass. – P. 714–740. https://doi.org/10.1007/0-387-30746-x_23
9. Pseudomonas syringae (bacterial blast) // PlantwisePlus Knowledge Bank. – 2022. – Vol. Species Pages – Art. 45010. https:// doi.org/10.1079/pwkb.species.45010
10. Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis / M. Nikolaidis, D. Mossialos, S. G. Oliver, G. D. Amo utzias // Diversity. – 2020. – Vol. 12, N 8. – P. 289. https://doi.org/10.3390/d12080289
11. Psallidas, P. G. A new bacteriosis of almond caused by Pseudomonas amygdali sp. nov / P. G. Psallidas, C. G. Pana- gopoulos // Annales de l’lnstitut Phytopathologique Benaki. – 1975. – Vol. 11, N 2. – P. 94–108.
12. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959) / L. Gardan, H. Shafik, S. Belouin [et al.] // International Journal of Systematic and Evolutionary Microbiology. – 1999. – Vol. 49, N 2 – P. 469–478. https://doi.org/10.1099/00207713-49-2-469
13. Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana / S. Lee, D. S. Yang, S. R. Uppalapati [et al.] // BMC Plant Biology. – 2013. – Vol. 13, N 1. – Art. 65. https://doi.org/10.1186/1471-2229-13-65
14. CABI. Pseudomonas syringae pv. mori (bacterial: mulberry blight) / CABI // CABI Compendium. – 2019. – Art. 44977. https:// doi.org/10.1079/cabicompendium.44977
15. Pathogenesis of Pseudomonas syringae pv. sesami associated with sesame (Sesamum indicum L.) bacterial leaf spot / S. S. Firdous, R. Asghar, M. Irfan-ul-Haque [et al.] // Pakistan Journal of Botany. – 2009. – Vol. 41, N 2. – P. 927–934.
16. Olczak-Woltman, H. Genetic background of host-pathogen interaction between Cucumis sativus L. and Pseudomonas syringae pv. lachrymans / H. Olczak-Woltman, M. Schollenberger, K. Niemirowicz-Szczytt // Journal of Applied Genetics. – 2009. – Vol. 50, N 1. – P. 1–7. https://doi.org/10.1007/bf03195645
17. Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv. lachrymans) in cucumber and identification of molecular markers linked to resistance / H. Olczak-Woltman, G. Bartoszewski, W. Mądry, K. Niemirowicz-Szczytt // Plant Pathology. – 2009. – Vol. 58, N 1. – P. 145–151. https://doi.org/10.1111/j.1365-3059.2008.01911.x
18. Evaluation of a loop‐mediated isothermal amplification assay based on hrpZ gene for rapid detection and identification of Pseudomonas syringae pv. lachrymans in cucumber leaves / X.‐L. Meng, X.‐W. Xie, Y.‐X. Shi [et al.] // Journal of Applied Microbiology. – 2017. – Vol. 122, N 2. – P. 441–449. https://doi.org/10.1111/jam.13356
19. Genome analysis of Pseudomonas syringae pv. lachrymans strain 814/98 indicates diversity within the pathovar / R. Słomnicka, H. Olczak-Woltman, M. Oskiera [et al.] // European Journal of Plant Pathology. – 2018. – Vol. 151, N 3. – P. 663–676. https://doi.org/10.1007/s10658-017-1401-8
20. Comparative genomic analysis of Pseudomonas amygdali pv. lachrymans NM002: Insights into its potential virulence genes and putative invasion determinants / L. Li, L. Yuan, Y. Shi [et al.] // Genomics. – 2019. – Vol. 111, N 6. – P. 1493–1503. https://doi.org/10.1016/j.ygeno.2018.10.004
21. Bolger, A. M. Trimmomatic: a flexible trimmer for Illumina sequence data / A. M. Bolger, M. Lohse, B. Usadel // Bioin formatics. – 2014. – Vol. 30, N 15. – P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
22. Sikolenko, M. A. Barapost: Binning of Nucleotide Sequences According to Taxonomic Annotation / M. A. Sikolenko, L. N. Valentovich // IEEE/ACM Transactions on Computational Biology and Bioinformatics. – 2021. – Vol. 18, N 6. – P. 2766–2767. https://doi.org/10.1109/tcbb.2020.3009780
23. Basic local alignment search tool / S. F. Altschul, W. Gish, W. Miller [et al.] // Journal of Molecular Biology. – 1990. – Vol. 215, N 3. – P. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
24. GenBank / D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman [et al.] // Nucleic Acids Research. – 2005. – Vol. 33, Iss. suppl_1. – P. D34–D38. https://doi.org/10.1093/nar/gki063
25. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing / A. Bankevich, S. Nurk, D. Anti- pov [et al.] // Journal of Computational Biology. – 2012. – Vol. 19, N 5. – P. 455–477. https://doi.org/10.1089/cmb.2012.0021
26. GitHub – masikol/cager-misc [Website]. – URL: https://github.com/masikol/cager-misc (date of access: 26.12.2020).
27. Assembly of long, error-prone reads using repeat graphs / M. Kolmogorov, J. Yuan, Y. Lin, P. A. Pevzner // Nature Biotechnology. – 2019. – Vol. 37, N 5. – P. 540–546. https://doi.org/10.1038/s41587-019-0072-8
28. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement / B. J. Walker, T. Abeel, T. Shea [et al.] // PLOS ONE. – 2014. – Vol. 9, N 11. – P. e112963. https://doi.org/10.1371/journal.pone.0112963
29. Langmead, B. Fast gapped-read alignment with Bowtie 2 / B. Langmead, S. L. Salzberg // Nature Methods. – 2012. – Vol. 9, N 4. – P. 357–359. https://doi.org/10.1038/nmeth.1923
30. Using Tablet for visual exploration of second-generation sequencing data / I. Milne, G. Stephen, M. Bayer [et al.] // Briefings in Bioinformatics. – 2013. – Vol. 14, N 2. – P. 193–202. https://doi.org/10.1093/bib/bbs012
31. NCBI prokaryotic genome annotation pipeline / T. Tatusova, M. DiCuccio, A. Badretdin [et al.] // Nucleic Acids Research. – 2016. – Vol. 44, N 14. – P. 6614–6624. https://doi.org/10.1093/nar/gkw569
32. Proksee: in-depth characterization and visualization of bacterial genomes / J. R. Grant, E. Enns, E. Marinier [et al.] // Nucleic Acids Research. – 2023. – Vol. 51, N W1. – P. W484–W492. https://doi.org/10.1093/nar/gkad326
33. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison / M. Richter, R. Rosselló-Móra, F. O. Glöckner, J. Peplies // Bioinformatics. – 2016. – Vol. 32, N 6. – P. 929–931. https://doi.org/10.1093/bioinformatics/btv681
34. OrthoANI: An improved algorithm and software for calculating average nucleotide identity / I. Lee, Y. O. Kim, S.-C. Park, J. Chun // International Journal of Systematic and Evolutionary Microbiology. – 2016. – Vol. 66, N 2. – P. 1100–1103. https://doi.org/10.1099/ijsem.0.000760
35. Darling, A. E. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement / A. E. Darling, B. Mau, N. T. Perna // PLOS One. – 2010. – Vol. 5, N 6. – P. e11147. https://doi.org/10.1371/journal.pone.0011147
36. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes / J. Sun, F. Lu, Y. Luo [et al.] // Nucleic Acids Research. – 2023. – Vol. 51, N W1. – P. W397–W403. https://doi.org/10.1093/nar/gkad313
37. REBASE – a database for DNA restriction and modification: enzymes, genes and genomes / R. J. Roberts, T. Vincze, J. Posfai, D. Macelis // Nucleic Acids Research. – 2015. – Vol. 43, N D1. – P. D298–299. https://doi.org/10.1093/nar/gku1046
38. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins / D. Couvin, A. Bernheim, C. Toffano-Nioche [et al.] // Nucleic Acids Research. – 2018. – Vol. 46, N W1. – P. W246–W251. https://doi.org/10.1093/nar/gky425
39. ResFinderFG v2.0: a database of antibiotic resistance genes obtained by functional metagenomics / R. Gschwind, S. Ugarcina Perovic, M. Weiss [et al.] // Nucleic Acids Research. – 2023. – Vol. 51, N W1. – P. W493–W500. https://doi.org/10.1093/nar/gkad384
40. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resis- tance, stress response, and virulence / M. Feldgarden, V. Brover, N. Gonzalez-Escalona [et al.] // Scientific Reports. – 2021. – Vol. 11, N 1. – Art. 12728. https://doi.org/10.1038/s41598-021-91456-0