Preview

Известия Национальной академии наук Беларуси. Серия биологических наук

Пашыраны пошук

Особенности структурно-функциональной организации генома бактерии Pseudomonas amygdali pv. lachrymans 8 – возбудителя угловатой пятнистости листьев огурца

https://doi.org/10.29235/1029-8940-2025-70-2-135-145

Анатацыя

В статье отражены результаты секвенирования, молекулярно-генетического и сравнительного анализа генома фитопатогенной бактерии Pseudomonas amygdali pv. lachrymans 8. Собранная геномная последовательность депонирована в базу данных GenBank Национального центра биотехнологической информации (НЦБИ) США (номера для доступа: CP075686–CP075690). В результате расчета средней нуклеотидной идентичности определено, что последовательность генома штамма 8 имеет сходство 99,87 % и 99,79 % с последовательностями геномов бактерий P. amygdali pv. lachrymans 814/98 и P. amygdali pv. lachrymans M301315 соответственно. Установлено, что геном штамма 8 представлен кольцевой хромосомой размером 6 054 652 п. н. с содержанием ГЦ-пар 58,11 % и четырьмя кольцевыми плазмидами: pPAL8-01 (77 748 п. н., содержание ГЦ-пар 56 %), pPAL8-02 (72 398 п. н., содержание ГЦ-пар 55 %), pPAL8-03 (49 000 п. н., содержание ГЦ-пар 54 %) и pPAL8-04 (9600 п. н., содержание ГЦ-пар 55 %). Высказано предположение, что путь распространения изучаемого фитопатогена осуществлялся либо параллельно из Нидерландов в США и Беларусь, либо сначала из Нидерландов на территорию США, а затем в Беларусь. Осуществлено сравнение нуклеотидной последовательности штамма 8 с нуклеотидными последовательностями бактерий P. amygdali pv. lachrymans M301315, NM002 и YM7902, в результате чего выявлены значительные генетические перестройки и определена локализация уникальной области размером 19 773 п. н.

Аб аўтарах

А. Муратова
Институт микробиологии Национальной академии наук Беларуси
Беларусь


А. Охремчук
Институт микробиологии Национальной академии наук Беларуси
Беларусь


Л. Валентович
Институт микробиологии Национальной академии наук Беларуси
Беларусь


Спіс літаратуры

1. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov / J. Lalucat, M. Gomila, M. Mulet [et al.] // Systematic and Applied Microbiology. – 2022. – Vol. 45, N 1. – Art. 126289. https://doi.org/10.1016/j.syapm.2021.126289

2. Pseudomonas genomes: diverse and adaptable / M. W. Silby, C. Winstanley, S. A. C. Godfrey [et al.] // FEMS Microbiology Reviews. – 2011. – Vol. 35, N 4. – P. 652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.x

3. Multifaceted Impacts of Plant-Beneficial Pseudomonas spp. in Managing Various Plant Diseases and Crop Yield Improvement / N. Mehmood, M. Saeed, S. Zafarullah [et al.] // ACS Omega. – 2023. – Vol. 8, N 25. – P. 22296–22315. https://doi.org/10.1021/acsomega.3c00870

4. Höfte, M. Plant pathogenic Pseudomonas species / M. Höfte, P. De Vos // Plant-Associated Bacteria / ed. S. S. Gnanamanickam. – Dordrecht, 2006. – P. 507–533. https://doi.org/10.1007/978-1-4020-4538-7_14

5. Diggle, S. P. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat / S. P. Diggle, M. Whiteley // Microbiology (Reading). – 2020. – Vol. 166, N 1. – P. 30–33. https://doi.org/10.1099/mic.0.000860

6. Pseudomonas fluorescens Showing Antifungal Activity against Macrophomina phaseolina, a Severe Pathogenic Fungus of Soybean, Produces Phenazine as the Main Active Metabolite / S. Castaldi, M. Masi, F. Sautua [et al.] // Biomolecules. – 2021. – Vol. 11, N 11. – Art. 1728. https://doi.org/10.3390/biom11111728

7. Phytopathogenic Pseudomonas syringae as a Threat to Agriculture: Perspectives of a Promising Biological Control Using Bacteriophages and Microorganisms / P. Córdova, J. P. Rivera-González, V. Rojas-Martínez [et al.] // Horticulturae. – 2023. – Vol. 9, N 6. – Art. 712. https://doi.org/10.3390/horticulturae9060712

8. Schroth, M. N. Phytopathogenic Pseudomonads and Related Plant-Associated Pseudomonads / M. N. Schroth, D. C. Hildebrand, N. Panopoulos // The Prokaryotes: A Handbook on the Biology of Bacteria / eds.: M. Dworkin [et al.]. – 3rd ed. – New York, 2006. – Vol. 6: Proteobacteria: Gamma Subclass. – P. 714–740. https://doi.org/10.1007/0-387-30746-x_23

9. Pseudomonas syringae (bacterial blast) // PlantwisePlus Knowledge Bank. – 2022. – Vol. Species Pages – Art. 45010. https:// doi.org/10.1079/pwkb.species.45010

10. Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis / M. Nikolaidis, D. Mossialos, S. G. Oliver, G. D. Amo utzias // Diversity. – 2020. – Vol. 12, N 8. – P. 289. https://doi.org/10.3390/d12080289

11. Psallidas, P. G. A new bacteriosis of almond caused by Pseudomonas amygdali sp. nov / P. G. Psallidas, C. G. Pana- gopoulos // Annales de l’lnstitut Phytopathologique Benaki. – 1975. – Vol. 11, N 2. – P. 94–108.

12. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959) / L. Gardan, H. Shafik, S. Belouin [et al.] // International Journal of Systematic and Evolutionary Microbiology. – 1999. – Vol. 49, N 2 – P. 469–478. https://doi.org/10.1099/00207713-49-2-469

13. Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana / S. Lee, D. S. Yang, S. R. Uppalapati [et al.] // BMC Plant Biology. – 2013. – Vol. 13, N 1. – Art. 65. https://doi.org/10.1186/1471-2229-13-65

14. CABI. Pseudomonas syringae pv. mori (bacterial: mulberry blight) / CABI // CABI Compendium. – 2019. – Art. 44977. https:// doi.org/10.1079/cabicompendium.44977

15. Pathogenesis of Pseudomonas syringae pv. sesami associated with sesame (Sesamum indicum L.) bacterial leaf spot / S. S. Firdous, R. Asghar, M. Irfan-ul-Haque [et al.] // Pakistan Journal of Botany. – 2009. – Vol. 41, N 2. – P. 927–934.

16. Olczak-Woltman, H. Genetic background of host-pathogen interaction between Cucumis sativus L. and Pseudomonas syringae pv. lachrymans / H. Olczak-Woltman, M. Schollenberger, K. Niemirowicz-Szczytt // Journal of Applied Genetics. – 2009. – Vol. 50, N 1. – P. 1–7. https://doi.org/10.1007/bf03195645

17. Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv. lachrymans) in cucumber and identification of molecular markers linked to resistance / H. Olczak-Woltman, G. Bartoszewski, W. Mądry, K. Niemirowicz-Szczytt // Plant Pathology. – 2009. – Vol. 58, N 1. – P. 145–151. https://doi.org/10.1111/j.1365-3059.2008.01911.x

18. Evaluation of a loop‐mediated isothermal amplification assay based on hrpZ gene for rapid detection and identification of Pseudomonas syringae pv. lachrymans in cucumber leaves / X.‐L. Meng, X.‐W. Xie, Y.‐X. Shi [et al.] // Journal of Applied Microbiology. – 2017. – Vol. 122, N 2. – P. 441–449. https://doi.org/10.1111/jam.13356

19. Genome analysis of Pseudomonas syringae pv. lachrymans strain 814/98 indicates diversity within the pathovar / R. Słomnicka, H. Olczak-Woltman, M. Oskiera [et al.] // European Journal of Plant Pathology. – 2018. – Vol. 151, N 3. – P. 663–676. https://doi.org/10.1007/s10658-017-1401-8

20. Comparative genomic analysis of Pseudomonas amygdali pv. lachrymans NM002: Insights into its potential virulence genes and putative invasion determinants / L. Li, L. Yuan, Y. Shi [et al.] // Genomics. – 2019. – Vol. 111, N 6. – P. 1493–1503. https://doi.org/10.1016/j.ygeno.2018.10.004

21. Bolger, A. M. Trimmomatic: a flexible trimmer for Illumina sequence data / A. M. Bolger, M. Lohse, B. Usadel // Bioin formatics. – 2014. – Vol. 30, N 15. – P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

22. Sikolenko, M. A. Barapost: Binning of Nucleotide Sequences According to Taxonomic Annotation / M. A. Sikolenko, L. N. Valentovich // IEEE/ACM Transactions on Computational Biology and Bioinformatics. – 2021. – Vol. 18, N 6. – P. 2766–2767. https://doi.org/10.1109/tcbb.2020.3009780

23. Basic local alignment search tool / S. F. Altschul, W. Gish, W. Miller [et al.] // Journal of Molecular Biology. – 1990. – Vol. 215, N 3. – P. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

24. GenBank / D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman [et al.] // Nucleic Acids Research. – 2005. – Vol. 33, Iss. suppl_1. – P. D34–D38. https://doi.org/10.1093/nar/gki063

25. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing / A. Bankevich, S. Nurk, D. Anti- pov [et al.] // Journal of Computational Biology. – 2012. – Vol. 19, N 5. – P. 455–477. https://doi.org/10.1089/cmb.2012.0021

26. GitHub – masikol/cager-misc [Website]. – URL: https://github.com/masikol/cager-misc (date of access: 26.12.2020).

27. Assembly of long, error-prone reads using repeat graphs / M. Kolmogorov, J. Yuan, Y. Lin, P. A. Pevzner // Nature Biotechnology. – 2019. – Vol. 37, N 5. – P. 540–546. https://doi.org/10.1038/s41587-019-0072-8

28. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement / B. J. Walker, T. Abeel, T. Shea [et al.] // PLOS ONE. – 2014. – Vol. 9, N 11. – P. e112963. https://doi.org/10.1371/journal.pone.0112963

29. Langmead, B. Fast gapped-read alignment with Bowtie 2 / B. Langmead, S. L. Salzberg // Nature Methods. – 2012. – Vol. 9, N 4. – P. 357–359. https://doi.org/10.1038/nmeth.1923

30. Using Tablet for visual exploration of second-generation sequencing data / I. Milne, G. Stephen, M. Bayer [et al.] // Briefings in Bioinformatics. – 2013. – Vol. 14, N 2. – P. 193–202. https://doi.org/10.1093/bib/bbs012

31. NCBI prokaryotic genome annotation pipeline / T. Tatusova, M. DiCuccio, A. Badretdin [et al.] // Nucleic Acids Research. – 2016. – Vol. 44, N 14. – P. 6614–6624. https://doi.org/10.1093/nar/gkw569

32. Proksee: in-depth characterization and visualization of bacterial genomes / J. R. Grant, E. Enns, E. Marinier [et al.] // Nucleic Acids Research. – 2023. – Vol. 51, N W1. – P. W484–W492. https://doi.org/10.1093/nar/gkad326

33. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison / M. Richter, R. Rosselló-Móra, F. O. Glöckner, J. Peplies // Bioinformatics. – 2016. – Vol. 32, N 6. – P. 929–931. https://doi.org/10.1093/bioinformatics/btv681

34. OrthoANI: An improved algorithm and software for calculating average nucleotide identity / I. Lee, Y. O. Kim, S.-C. Park, J. Chun // International Journal of Systematic and Evolutionary Microbiology. – 2016. – Vol. 66, N 2. – P. 1100–1103. https://doi.org/10.1099/ijsem.0.000760

35. Darling, A. E. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement / A. E. Darling, B. Mau, N. T. Perna // PLOS One. – 2010. – Vol. 5, N 6. – P. e11147. https://doi.org/10.1371/journal.pone.0011147

36. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes / J. Sun, F. Lu, Y. Luo [et al.] // Nucleic Acids Research. – 2023. – Vol. 51, N W1. – P. W397–W403. https://doi.org/10.1093/nar/gkad313

37. REBASE – a database for DNA restriction and modification: enzymes, genes and genomes / R. J. Roberts, T. Vincze, J. Posfai, D. Macelis // Nucleic Acids Research. – 2015. – Vol. 43, N D1. – P. D298–299. https://doi.org/10.1093/nar/gku1046

38. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins / D. Couvin, A. Bernheim, C. Toffano-Nioche [et al.] // Nucleic Acids Research. – 2018. – Vol. 46, N W1. – P. W246–W251. https://doi.org/10.1093/nar/gky425

39. ResFinderFG v2.0: a database of antibiotic resistance genes obtained by functional metagenomics / R. Gschwind, S. Ugarcina Perovic, M. Weiss [et al.] // Nucleic Acids Research. – 2023. – Vol. 51, N W1. – P. W493–W500. https://doi.org/10.1093/nar/gkad384

40. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resis- tance, stress response, and virulence / M. Feldgarden, V. Brover, N. Gonzalez-Escalona [et al.] // Scientific Reports. – 2021. – Vol. 11, N 1. – Art. 12728. https://doi.org/10.1038/s41598-021-91456-0


##reviewer.review.form##

Праглядаў: 22


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)