A new test system for Salmonella detection in food products by competitive immonoassay
https://doi.org/10.29235/1029-8940-2025-70-1-55-68
Abstract
Detecting Salmonella in foods is topical due to the known cases of salmonellosis epidemics. Immunochemical methods including enzyme-linked immunosorbent assay (ELISA) have been widely used in Salmonella detection. Traditionally, ELISA of Salmonella is based on detecting lipopolysaccharide (LPS), which is considered to be the main structural component of the outer membrane of the cell of Gram-negative bacteria. Core (conservative LPS element common to all Salmonella) and O-antigen (hypervariable LPS element) are available for interaction with antibodies. It was shown using commercial MAb 5D12A (to the core of LPS) or MAb 10D9H (to the common epitope of the O-antigen of Salmonella serogroups A, B and D) that in the Salmonella culture obtained during sample preparation, traditional for the analysis of these bacteria in foods, LPS is present mainly outside cells, in the medium (no less than 90 %). It has been found that the addition of centrifugation to the standard sample preparation procedure to separate bacteria from the medium and a subsequent analysis of the medium can expand the test-system working range towards lower LPS concentrations and increase the analytical sensitivity. It has been shown that immobilization of the bovine serum albumin (BSA)-LPS conjugate in the wells of a microplate immunosorbent allows one to obtain a more homogeneous coating than immobilization of LPS itself. We have elaborated 2 test systems for Salmonella detection in foods by competitive ELISA of LPS secreted in medium. In each of the two test systems, the BSA-LPS conjugate is immobilized on the solid phase, and in the liquid phase there are either MAb 5D12A or MAb 10D9H. The sensitivity of the analysis for each test system is 105 CFU/ml. The test system based on MAb 5D12A is advan tageous since it allows detecting all Salmonella regardless of serotype.
About the Authors
E. P. KiselevaBelarus
Elena P. Kiseleva – Ph. D. (Chem.), Leading Researcher
5/2, Academician Kuprevich Str., 220141, Minsk
K. I. Mikhailopulo
Belarus
Konstantin I. Mikhailopulo – Senior Researcher
5/2, Academician Kuprevich Str., 220141, Minsk
O. V. Sviridov
Belarus
Oleg V. Sviridov – D. Sc. (Chem.), Professor, Head of the Laboratory
5/2, Academician Kuprevich Str., 220141, Minsk
References
1. Hung Y.-T., Lay C.-J., Wang C.-L., Koo M. Characteristics of non-typhoidal Salmonella astroenteritis in Taiwanese children: a 9-year period retrospective medical record review. Journal of Infection and Public Health, 2017, vol. 10, no. 5, pp. 518–521. https://doi.org/10.1016/j.jiph.2016.09.018
2. Castro-Vargas R. E., Herrera-Sánchez M. P., Rodríguez-Hernández R., Rondón-Barragán I. S. Antibiotic resistance in Salmonella spp. Isolated from poultry: A global overview. Veterinary World, 2020, vol. 13, no. 10, pp. 2070–2084. https://doi.org/10.14202/vetworld.2020.2070-2084
3. Podolak R., Enache E., Stone W., Black D. G., Elliott P. H. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection, 2010, vol. 73, no. 10, pp. 1919– 1936. https://doi.org/10.4315/0362-028x-73.10.1919
4. Arya G., Holtslander R., Robertson J., Yoshida C., Harris J., Parmley J., Nichani A., Johnson R., Poppe C. Epidemiology, pathogenesis, genoserotyping, antimicrobial resistance, and prevention and control of non-typhoidal Salmonella serovars. Current Clinical Microbiology Reports, 2017, vol. 4, pp. 43–53. https://doi.org/10.1007/s40588-017-0057-7
5. Brenner F. W., Villar R. G., Angulo F. J., Tauxe R., Swaminathan B. Salmonella nomenclature. Journal of clinical microbiology. 2000, vol. 38, no. 7, pp. 2465–2467. https://doi.org/10.1128/jcm.38.7.2465-2467.2000
6. Popoff M. Y., Le Minor L. Antigenic Formulas of the Salmonella Serovars, 7th Revision, 1997. W. H. O. Collaborating Centre of Reference and Research on Salmonella Institute Pasteur, Paris, France.
7. Luo Y., Yi W., Yao Y., Zhu N., Qin P. Characteristic diversity and antimicrobial resistance of Salmonella from gastroenteritis. The Journal of Infection and Chemotherapy, 2018, vol. 24, no. 4, pp. 251–255. https://doi.org/10.1016/j.jiac.2017.11.003
8. Awang M. S., Bustami Y., Hamzah H. H., Zambry N. S., Najib M. A., Khalid M. F., Aziah I., Manaf A. A. Advancement in Salmonella detection methods: from conventional to electrochemical-based sensing detection. Biosensors, 2021, vol. 11, no. 9, art. 346. https://doi.org/10.3390/bios11090346
9. NF VALIDATION, Validation of alternative analysis methods – application to foodstuffs (NF102). List valid on 11th March-2024. Iss. on 18-12-2023. 77 p. Available at: https://nf-validation.afnor.org/en/wp-content/uploads/sites/2/2024/03/Listvalid-2024-03-11.pdf (accessed 09.12.2024).
10. Cox N. A. Salmonella methodology update. Poultry Science, 1988, vol. 67, no. 6, pp. 921–927. https://doi.org/10.3382/ps.0670921
11. Kuhn K. G., Falkenhorst G., Ceper T. H., Dalby T., Ethelberg S., Mølbak K., Krogfelt K. A. Detecting non-typhoid Salmonella in humans by ELISAs: a literature review. Journal of Medical Microbiology, 2012, vol. 61, no. 1, pp. 1–7. https://doi.org/10.1099/jmm.0.034447-0
12. Mirhosseini S. A., Fooladi A. A., Amani J., Sedighian H. Production of recombinant flagellin to develop ELISAbased detection of Salmonella enteritidis. Brazilian journal of microbiology, 2017, vol. 48, no. 4, pp. 774–781. https://doi.org/10.1016/j.bjm.2016.04.033
13. Wang W., Liu L., Song S., Xu L., Kuang H., Zhu J., Xu C. Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody. Science China Materials, 2016, vol. 59, pp. 665–674. https://doi.org/10.1007/s40843-016-5077-0
14. Wu X., Wang W., Liu L., Kuang H., Xu C. Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. Analytical Methods, 2015, vol. 7, no. 21, pp. 9047–9053. https://doi.org/10.1039/c5ay01923k
15. Combo S., Mendes S., Nielsen K. M., da Silva G. J., Domingues S. The discovery of the role of outer membrane vesicles against bacteria. Biomedicines, 2022, vol. 10, no. 10, art. 2399. https://doi.org/10.3390/biomedicines10102399
16. Schwechheimer C., Sullivan C. J., Kuehn M. J. Envelope control of outer membrane vesicle production in Gramnegative bacteria. Biochemistry, 2013, vol. 52, no. 18, pp. 3031–3040. https://doi.org/10.1021/bi400164t
17. Schwechheimer С., Kuehn M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 2015, vol. 13, pp. 605–619. https://doi.org/10.1038/nrmicro3525
18. Avila-Calderón E. D., Ruiz-Palma M. D. S., Aguilera-Arreola Ma. G., Velázquez-Guadarrama N., Ruiz E. A., GomezLunar Z., Witonsky S., Contreras-Rodríguez A. Outer membrane vesicles of Gram-negative bacteria: an outlook on biogenesis. Frontiers in Microbiology, 2021, vol. 12, art. 557902. https://doi.org/10.3389/fmicb.2021.557902
19. Roier S., Zingl F. G., Cakar F., Durakovic S., Kohl P., Eichmann T. O., Klug L., Gadermaier B., Weinzerl K., Prassl R., Lass A., Daum G., Reidl G., Feldman M. F., Schild S. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nature Communications, 2016, vol. 7, art. 10515. https://doi.org/10.1038/ncomms10515
20. Rezania S., Amirmozaffari N., Tabarraei B., Jeddi-Tehrani M., Zarei O., Alizadeh R., Masjedian F., Zarnani A. H. Extraction, purification and characterization of lipopolysaccharide from Escherichia coli and Salmonella typhi. Avicenna Journal of Medical Biotechnology, 2011, vol. 3, no. 1, pp. 3–9.
21. Al-AAlim A. M., Al-ledani A. A., Hamad M. A. Extraction and purification of lipopolysaccharide from Escherichia coli (local Isolate) and study its pyrogenic activity. Iraqi Journal of Veterinary Sciences, 2022, vol. 36, no. 1, pp. 45–51. https://doi.org/10.33899/ijvs.2021.128963.1614
22. Westphal O., Jann K. Bacterial lipopolysaccharides extraction with phenol-water and further applications of the procedure. Methods in Carbohydrate Chemistry, 1965, vol. 5, pp. 83–91.
23. Sarmikasoglou E., Faciola A. P. Ruminal lipopolysaccharides analysis: uncharted waters with promising signs. Animals (Basel), 2021, vol. 11, no. 1, art. 195. https://doi.org/10.3390/ani11010195
24. Nazirov M. R., Poddubikov A. V., Kukes V. G., Sidorov N. G., Parfenova O. K. Quantitative determination of B. pertussis lipopolysaccharide. Byulleten’ eksperimental’noi biologii i meditsiny [Bulletin of Experimental Biology and Medi cine], 2021, vol. 172, no. 12, pp. 716–718 (in Russian).
25. Richter W., Vogel V., Howe J., Steiniger F., Brauser A., Koch M. H. J., Roessle M., Gutsmann T., Garidel P., Mäntele W., Brandenburg K. Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immunity, 2010, vol. 17, no. 5, pp. 427–438. https://doi.org/10.1177/1753425910372434
26. Fux A. C., Melo C. C., Michelini S., Swartzwelter B. J., Neusch A., Italiani P., Himly M. Heterogeneity of lipopolysaccharide as source of variability in bioassays and LPS-binding proteins as remedy. International Journal of Molecular Sciences, 2023, vol. 24, art. 8395. https://doi.org/10.3390/ijms24098395
27. Gorman А., Golovanov A. P. Lipopolysaccharide structure and the phenomenon of low endotoxin recovery. European Journal of Pharmaceutics and Biopharmaceutics, 2022, vol. 180, pp. 289–230. https://doi.org/10.1016/j.ejpb.2022.10.006
28. Brandenburg K., Mayer H., Koch M. N. J., Weckesser J., Rietschel E. T., Seydel U. Influence of the supramolecular structure of free lipid A on its biological activity. European Journal of Biochemistry, 1993, vol. 218, pp. 555–563. https://doi.org/10.1111/j.1432-1033.1993.tb18409.x
29. Reich J., Lang P., Grallert H., Motschmann H. Masking of endotoxin in surfactant samples: Effects on Limulus-based detection systems. Biologicals, 2016, vol. 44, no. 5, pp. 417–422. https://doi.org//10.1016/j.biologicals.2016.04.012
30. Reich J., Weyer F. A., Tamura H., Nagaoka I., Motschmann H. Low endotoxin recovery – masking of naturally occurring endotoxin. International Journal of Molecular Sciences, 2019, vol. 20, no. 4, art. 838. https://doi.org/10.3390/ijms20040838
31. Schwarz H., Gornicec J., Neuper T., Parigiani M. A., Wallner M., Duschl A., Horejs-Hoeck J. Biological activity of masked endotoxin. Scientific Reports, 2017, vol. 7, art. 44750. https://doi.org/10.1038/srep44750
32. Lerouge I., Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant microbe interactions. FEMS Microbiology Reviews, 2001, vol. 26, no. 1, pp. 17–47. https://doi.org/10.1111/j.1574-6976.2002.tb00597.x
33. Whitfield С., Danielle M. W., Kelly S. D. Lipopolysaccharide O-antigens – bacterial glycans made to measure. Journal of Biological Chemistry, 2020, vol. 295, no. 31, pp. 10593–10609. https://doi.org/10.1074/jbc.rev120.009402
34. Rice A., Wereszczynski J. Atomistic scale effects of lipopolysaccharide modifications on bacterial outer membrane defenses. Biophysical Journal, 2018, vol. 114, no. 6, pp. 1389–1399. https://doi.org/10.1016/j.bpj.2018.02.006