Genetic characteristics of the bred group of deer and assessment of gene flow from it to natural populations
https://doi.org/10.29235/1029-8940-2025-70-1-40-47
Abstract
Here we present the results of genetic analysis of an artificial deer population, inhabiting an enclosed territory near Lida. The analysis was aimed at determining the precise origins and genetic characteristics of the population and disco vering presence of any gene flow between the artificial population and the wild deer of the region. We employed mitochondrial control region haplotypes analysis to identify origins and possible matrilineal hybrids, and hybrid classification of migration analysis based on microsatellite data to discover hybrid specimens and gene flow, respectively. We have determined that the artificial population in question belongs to the species Cervus canadensis sibiricus, or Altai wapiti, originates in the South Altai region, and possesses mediocre genetic diversity as can be expected from a population of this size. While singular results of hybrid analysis seem to indicate a possibility of rare interbreeding between escaped wapiti and wild deer, there are no indicators of any substantial gene flow from the artificial population into the wild, but we believe that it still warrants additional attention in order to prevent undesirable introgression.
About the Authors
A. A. ValnistyBelarus
Arseni A. Valnisty – Researcher
27, Akademisheskaya Str., 220072, Minsk
K. V. Homel
Belarus
Kanstantsin V. Homel – Ph. D. (Biol.), Leading Researcher
27, Akademisheskaya Str., 220072, Minsk
G. V. Sergeev
Belarus
Gennady V. Sergeev – Ph. D. (Chem.), Head of Laboratory
5/2, Academician Kuprevich Str., Minsk
M. E. Nikiforov
Belarus
Mikhail E. Nikiforov – Academician, D. Sc. (Biol.), Head of the Laboratory
27, Akademisheskaya Str., 220072, Minsk
References
1. Romanov V. S, Kozlo P. G. Red deer (Cervus e. elaphus) in Belarus and the main principles of it’s continued reacclimatization. Trudy Belorusskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya Lesnoe khozyaistvo [Proceedings of the Belarusian State Technological University. Forestry Series], 2002, no. 10, pp. 30–42 (in Russian).
2. Shakun, V. V. Mammals of Belarus, Minsk, Belarus’ Publ., 2022. 248 p. (in Russian).
3. Shakun, V. V. Peculiarities of the formation of red deer populations in Belarus and the factors causing them. Minsk, 2011, 24 p. (in Russian).
4. Goodman S. J., Barton N. H., Swanson G., Abernethy K., Pemberton J. M. Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (Genus Cervus) in Argyll, Scotland. Genetics, 1999, vol. 152, no. 1, pp. 355–371. https://doi.org/10.1093/genetics/152.1.355
5. Gilman R. T., Behm J. E. Hybridization, species collapse, and species reemergence after disturbance to premating mechanisms of reproductive isolation. Evolution, 2011, vol. 65, no. 9, pp. 2592–2605. https://doi.org/10.1111/j.15585646.2011.01320.x
6. Quilodrán C. S., Austerlitz F., Currat M., Montoya-Burgos J. I. Cryptic biological invasions: A general model of hybridization. Scientific Reports, 2018, vol. 8, no. 1, p. 2414. https://doi.org/10.1038/s41598-018-20543-6
7. Hale M. L., Burg T. M., Steeves T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE, 2012, vol. 7, no. 9, p. e45170. https://doi.org/10.1371/journal.pone.0045170
8. Valnisty A. A., Semenova A. A., Molchan V. O., Homel K. V., Kheidorova E. E., Shpak A. V., Slivinska K., Lobanovs kaya P. Yu., Nikiforov M. E. Collection of the Genetic Bank of Wild Fauna of the State Scientific and Production Center for Bioresources of the National Academy of Sciences of Belarus – approaches to formation and practice of using collection materials for genetic research. Vserossiiskaya konferentsiya “Zoologicheskie kollektsii kak istochnik geneticheskikh resursov mirovoi fauny – klassicheskie i sovremennye podkhody k ikh izucheniyu, khraneniyu i ispol’zovaniyu”: programma, tezisy dokladov i posternykh soobshchenii, 22–23 iyunya 2022 goda, Sankt-Peterburg [All-Russian Conference “Zoological Collections as a Source of Genetic Resources of the World Fauna – Classical and Modern Approaches to Their Study, Storage and Use”: program, abstracts of reports and poster presentations, June 22–23, 2022, St. Petersburg]. St. Petersburg, 2022, p. 15 (in Russian).
9. Valnisty A. A., Homel K. V., Kheidorova E. E., Nikiforov M. Y., Molchan V. O., Lobanovskaya P. Y., Semionova A. A. Reintroduction shapes the genetic structure of the red deer (Cervus elaphus) population in Belarus. Theriologia Ukrainica, 2022, vol. 2022, no, 23. pp. 31–46. http://doi.org/10.15407/tu2306
10. Valnisty A. A., Homel K. V., Kheidorova E. E., Molchan V. O., Nikiforov M. Y. Between the lines: Mitochondrial lineages in the heavily managed red deer population of Belarus. Mammalian Biology, 2024, vol. 104, no. 2, pp. 205–214. https://doi.org/10.1007/s42991-023-00397-w
11. Sundqvist L., Keenan K., Zackrisson M., Prodöhl P., Kleinhans D. Directional genetic differentiation and relative migration. Ecology and Evolution, 2016, vol. 6, no. 11, pp. 3461–3475. https://doi.org/10.1002/ece3.2096
12. Keenan K., McGinnity P., Cross T. F., Crozier W. W., Prodöhl P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 2013, vol. 4, no. 8, pp. 782–788. https://doi.org/10.1111/2041-210х.12067
13. Anderson E. C., Thompson E. A. A model-based method for identifying species hybrids using multilocus genetic data. Genetics, 2002, vol. 160, no. 3, pp. 1217–1229. https://doi.org/10.1093/genetics/160.3.1217
14. Excoffier L., Lischer H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 2010, vol. 10, no. 3, pp. 564–567. https://doi.org/10.1111/j.17550998.2010.02847.x
15. Valnisty A. A. Development of a panel of microsatellite markers for multiplex genotyping of Belarusian populations of red deer (Cervus elaphus L.). Struktura i dinamika bioraznoobraziya: materialy I Respublikanskoi zaochnoi nauchno-prakticheskoi konferentsii molodykh uchenykh, Minsk, 23 dekabrya 2019 goda [Structure and dynamics of biodiversity: Proceedings of the I Republican correspondence scientific and practical conference of young scientists, Minsk, December 23, 2019]. Minsk, 2019, pp. 260–263 (in Russian).
16. Meiri M., Lister A. M., Higham T. F. G., Stewart J. R., Straus L. G., Obermaier H., González Morales M. R., Marín- Arroyo A. B., Barnes I. Late-glacial recolonization and phylogeography of European red deer (Cervus elaphus L.). Molecular Ecology, 2013, vol. 22, no. 18, pp. 4711–4722. https://doi.org/10.1111/mec.12420
17. Mackiewicz P., Matosiuk M., Świsłocka M., Zachos F. E., Hajji G. M., Saveljev A. P., Seryodkin I. V., Farahvash T., Rezaei H. R., Torshizi R. V., Mattioli S., Ratkiewicz M. Phylogeny and evolution of the genus Cervus (Cervidae, Mammalia) as revealed by complete mitochondrial genomes. Scientific Reports, 2022, vol. 12, no. 1, art. 16381. https://doi.org/10.1038/s41598-022-20763-x
18. Boore J. L. Animal mitochondrial genomes. Nucleic Acids Research, 1999, vol. 27, no. 8, pp. 1767–1780. https://doi.org/10.1093/nar/27.8.1767
19. Teitelbaum C. S., Fagan W. F., Fleming C. H., Dressler G., Calabrese J. M., Leimgruber P., Mueller T. How far to go? Determinants of migration distance in land mammals. Ecology Letters, 2015, vol. 18, no. 6, pp. 545–552. https://doi.org/10.1111/ele.12435