Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Suppressing the side reactions of pregnenolone acetylation in transgenic yeast using competitive inhibition and optimal vector‒host system

https://doi.org/10.29235/1029-8940-2024-69-3-207-216

Abstract

The rational design of the vector‒host system and the conditions for its use is the key to its most effective use as a biocatalyst for obtaining valuable products or for testing potential bioregulators. In this work, we will consider examples of such solutions for some yeasts from the literature over the past 5 years and our experience in optimizing the reactions of 17α-hydroxylation of pregnanes with recombinant strains of the yeast S. cerevisiae and Y. lipolytica. Thus, it was known that pregnenolone and its product pregnenolone and the products of its transformation by cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17) ‒ 17 hydroxypregnenolone, dehydroepiandrosterone ‒ undergo 3-O-acetylation by the Atf2p enzyme of the yeast Saccharomyces cerevisiae. We have found that adding isoamyl or amyl alcohol to the cultivation medium significantly reduced the formation of 3-O-acetylated products by both uninduced and induced cells of transgenic yeast S. cerevisiae GRF18 YEp5117α expressing P450c17 under the control of the GAL10 promoter. In this case, the Atf2p substrate competition model was applied. A more effective solution was to use a different host microorganism and an expression promoter. The analysis of the genome of the yeast Y. lipolytica using the BLAST program showed the absence of potential analogues of Atf2p, which was confirmed by the absence of pregnenolone acetylation products. Selecting the optimal host organism is an alternative to using a strain with a deleted gene.

About the Authors

Ya. V. Faletrov
Research Institute for Physicochemical Problems of Belarusian State University
Belarus

Yaroslav V. Faletrov – Ph. D. (Chem.), Associate Professor, Leading Researcher, Research Institute for Physicochemical Problems of Belarusian State University.

14, Leningradskaya Str., 220006, Minsk



N. S. Frolova
Research Institute for Physicochemical Problems of Belarusian State University
Belarus

Nina S. Frolova – Researcher, Research Institute for Physicochemical Problems of Belarusian State University.

14, Leningradskaya Str., 220006, Minsk



S. Mauersberger
Institute of Microbiology, Dresden University of Technology
Germany

Stephan Mauersberger ‒ D. Sc., Senior Researcher, Institute of Microbiology, Dresden University of Technology.

Hedda Vogel, 01062, Dresden



V. M. Shkumatov
Research Institute for Physicochemical Problems of Belarusian State University
Belarus

Vladimir M. Shkumatov – Corresponding Member, D. Sc. (Biol.).



References

1. Charney W., Herzog H. L. Microbial transformation of steroids. New York, Academic Press Publ., 1967. 728 p.

2. Akhrem A. A., Titov Yu. A. Steroids and microorganisms. Moscow, Nauka Publ., 1970. 525 p. (in Russian).

3. Fernandes P., Cruz A., Angelova B., Pinheiro H. M., Cabral J. M. S. Microbial conversion of steroid compounds: recent developments. Enzyme and Microbial Technology, 2003, vol. 32, no. 6, pp. 688‒705. https://doi.org/10.1016/S0141-0229(03)00029-2

4. Shkumatov V. M., Usova E. V., Radyuk V. G., Frolova N. S., Raikov A. V., Novikova L. A., Nazarov P. A., Drutsa V. L., Luzikov V. N. New approaches to the synthesis of steroids. Selected scientific practices of the Belarusian State University. Vol. 5. Chemistry. Minsk, 2001, pp. 447‒460 (in Russian).

5. Marsheck W. J., Kraychy S., Muir R. D. Microbial degradation of sterols. Applied Microbiology, 1972, vol. 23, no. 1, pp. 72‒77. https://doi.org/10.1128/am.23.1.72-77.1972

6. Cauet G., Degryse E., Ledoux C., Spagnoli R., Achstetter T. Pregnenolone esterification in Saccharomyces cerevisiae. A potential detoxification mechanism. European Journal of Biochemistry, 1999, vol. 261, no. 1, pp. 317‒324. https://doi.org/10.1046/j.1432-1327.1999.00282.x

7. Vico P., Cauet G., Rose K., Lathe R., Degryse E. Dehydroepiandrosterone (DHEA) metabolism in Saccharomyces cerevisiae expressing mammalian steroid hydroxylase CYP7B: Ayr1p and Fox2p display 17β-hydroxysteroid dehydrogenase activity. Yeast, 2002, vol. 19, no. 10, pp. 873‒886. https://doi.org/10.1002/yea.882

8. Shkumatov V. M., Usova E. V., Poljakov Y. S., Frolova N. S., Radyuk V. G., Mauersberger S., Chernogolov A. A., Honeck H., Schunck W.-H. Biotransformation of steroids by a recombinant yeast strain expressing bovine cytochrome P-45017α. Biochemistry (Moscow), 2002, vol. 67, no. 4, pp. 456–467 (in Russian). https://doi.org/10.1023/A:1015290108071

9. Shkumatov V. M., Usova E. V., Radyuk V. G., Kashkan Zh. N., Kovganko N. V., Juretzek T., Mauersberger S. Oxidation of 17α,20β- and 17α,20α-dihydroxypregn-4-en-3-ones, side products of progesterone biotransformation with recombinant microorganisms expressing cytochrome P-45017α. Russian Journal of Bioorganic Chemistry, 2023, vol. 29, pp. 581–587 (in Russian). https://doi.org/10.1023/B:RUBI.0000008900.54667.d9

10. Szchebara F. M., Chandelier C., Villeret C., Masurel A., Bourot S., Duport C. [et al.]. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nature Biotechnology, 2003, vol. 21, no. 2, рр. 143‒148. https://doi.org/10.1038/nbt775

11. Manosroi J., Saowakhon S., Manosroi A. Enhancement of 17α-hydroxyprogesterone production from progesterone by biotransformation using hydroxypropyl-β-cyclodextrin complexation technique. Journal of Steroid Biochemistry and Molecular Biology, 2008, vol. 112, no. 4–5, рр. 201‒204. https://doi.org/10.1016/j.jsbmb.2008.10.003

12. Fickers P., Benetti P.-H., Waché Y., Marty A., Mauersberger S., Smit M. S., Nicaud J.-M. Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Research, 2005, vol. 5, no. 6–7, рр. 527‒543. https://doi.org/10.1016/j.femsyr.2004.09.004

13. Zinjarde S., Pant A. Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Journal of Basic Microbiology, 2002, vol. 42, no. 1, рр. 67‒73. https://doi.org/10.1002/1521-4028(200203)42:1<67::AID-JOBM67>3.0.CO;2-M

14. Mauersberger S., Novikova L. A., Shkumatov V. M. Cytochrome P450 expression in Yarrowia lipolytica and its use in steroid biotransformation Yarrowia lipolytica. New York, 2013, рр. 171‒226. https://doi.org/10.1007/978-3-642-38583-4_7

15. Shkumatov V. M., Usova E. V., Frolova N. S., Barth G., Mauersberger S. Effect of steroid biosynthesis modifiers on progesterone biotransformation by recombinant yeasts expressing cytochrome P450cl7. Biochemistry (Moscow), 2007, Suppl. Ser. B, vol. 1, pp. 87–94 (in Russian). https://doi.org/10.1134/S1990750807010131

16. Shkumatov V. M., Frolova N. S., Rudaya E. V., Faletrov Ya. V., Mauersberger S., Barth G. Range of substrates and steroid bioconversion reactions performed by recombinant microorganisms Saccharomyces cerevisiae and Yarrowia lipolytica expressing cytochrome P450c17. Applied Biochemistry and Microbiology, 2006, vol. 42, рр. 472‒478 (in Russian). https://doi.org/10.1134/S000368380605005x

17. Zhang Yu., Wang Y., Yao M., Liu H., Zhou X., Xiao W., Yuan Y. Improved campesterol production in engineered Yarrowia lipolytica strains. Biotechnology Letters, 2017, vol. 39, no. 7, рр. 1033‒1039. https://doi.org/10.1007/s10529-017-2331-4

18. Zhang R., Zhang Y., Wang Y., Yao M., Zhang J., Liu H., Zhou X., Xiao W., Yuan Y. Pregnenolone overproduction in Yarrowia lipolytica by integrative components pairing of the cytochrome P450scc system. ACS Synthetic Biology, 2019, vol. 8, no. 12, рр. 2666‒2678. https://doi.org/10.1021/acssynbio.9b00018

19. Xu S., Teng X., Li Y. Optimization of campesterol-producing yeast strains as a feasible platform for the functional reconstitution of plant membrane-bound enzymes. ACS Synthetic Biology, 2023, vol. 12, no. 4, pp. 1109‒1118. https://doi.org/10.1021/acssynbio.2c00599

20. Altschul S. F., Wootton J. C., Gertz E. M., Agarwala R., Morgulis A., Schäffer A. A., Yu Y.‐K. Protein database searches using compositionally adjusted substitution matrices. FEBS Journal, 2005, vol. 272, no. 20, pp. 5101‒5109. https://doi.org/10.1111/j.1742-4658.2005.04945.x

21. Vadali R. V., Horton C. E., Rudolph F. B., Bennett G. N., San K.-Y. Production of isoamyl acetate in acka-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2. Applied Microbiology and Biotechnology, 2004, vol. 63, no. 6, pp. 698‒704. https://doi.org/10.1007/s00253-003-1452-y

22. Fujii T., Kobayashi O., Yoshimoto H., Furukawa S., Tamai Y. Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Applied and Environmental Microbiology, 1997, vol. 63, no. 3, pp. 910‒915. https://doi.org/10.1128/aem.63.3.910-915.1997

23. Renaud J., Cullin Ch., Pompon D., Beaune Ph., Mansuy D. Expression of human liver cytochrome P450 IIIA4 in yeast. A functional model for the hepatic enzyme. European Journal of Biochemistry, 1990, vol. 194, no. 3, pp. 889‒896. https://doi.org/10.1111/j.1432-1033.1990.tb19483.x

24. Yuan J., Mishra P., Ching C. B. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2017, vol. 44, no. 1, pp. 107‒117. https://doi.org/10.1007/s10295-016-1855-2

25. Loke S., Stoll A., Machalz D., Botrè F., Wolber G., Bureik M., Parr M. K. Corticosteroid biosynthesis revisited: no direct hydroxylation of pregnenolone by steroid 21-hydroxylase. Frontiers in Endocrinology (Lausanne), 2021, vol. 12, art. 633785. https://doi.org/10.3389/fendo.2021.633785

26. Hirz M., Richter G., Leitner E., Wriessnegger T., Pichler H. A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase α3β1 isoform. Applied Microbiology and Biotechnology, 2013, vol. 97, no. 21, pp. 9465‒9478. https://doi.org/10.1007/s00253-013-5156-7

27. Hernández-Carbajal G., Rutiaga-Quiñones O. M., Pérez-Silva A., Saucedo-Castañeda G., Medeiros A., Soccol C. R., Soto-Cruz N. Ó. Screening of native yeast from Agave duranguensis fermentation for isoamyl acetate production. Brazilian Archives of Biology and Technology, 2013, vol. 56, no. 3, pp. 357‒363. https://doi.org/10.1590/S1516-89132013000300002

28. Ehmer P. B., Jose J., Hartmann R. W. Development of a simple and rapid assay for the evaluation of inhibitors of human 17a-hydroxylase-C17,20-lyase (P450cl7) by coexpression of P450cl7 with NADPH-cytochrome-P450-reductase in Escherichia coli. Journal of Steroid Biochemistry and Molecular Biology, 2000, vol. 75, no. 1, pp. 57‒63. https://doi.org/10.1016/s0960-0760(00)00137-0

29. Barnes H. J., Arlotto M. P., Waterman M. R. Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proceedings of the National Academy of Sciences of the USA, 1991, vol. 88, no. 13, pp. 5597‒5601. https://doi.org/10.1073/pnas.88.13.5597

30. Li R., Guo S., Wang D., Yang T., Zhang X., Dai Z. De novo progesterone synthesis in plants. BioRxiv, 2023. Available at: https://doi.org/10.1101/2023.07.19.549634 (accessed 31.05.2024).

31. Snaterse G., Taylor A. E., Moll J. M., O’Neil D. M., Teubel W. J., van Weerden W. M., Arlt W., Hofland J. Prostate cancer androgen biosynthesis relies solely on CYP17A1 downstream metabolites. Journal of Steroid Biochemistry and Molecular Biology, 2024, vol. 236, art. 106446. https://doi.org/10.1016/j.jsbmb.2023.106446

32. Rogers M. A., Liu J., Kushnir M. M., Bryleva E., Rockwood A. L., Meikle A. W., Shapiro D., Vaisman B. L., Remaley A. T., Chang C. C. Y., Chang T. Y. Cellular pregnenolone esterification by acyl-CoA:cholesterol acyltransferase. Journal of Biological Chemistry, 2012, vol. 287, no. 21, pp. 17483‒17492. https://doi.org/10.1074/jbc.M111.331306

33. An S., Cho K.-H., Lee W. S., Lee J.-O., Paik Y.-K., JeongA T.-S. A critical role for the histidine residues in the catalytic function of acyl-CoA: cholesterol acyltransferase catalysis: evidence for catalytic difference between ACAT1 and ACAT2. FEBS Letters, 2006, vol. 580, no. 11, pp. 2741–2749. https://doi.org/10.1016/j.febslet.2006.04.035

34. Jarman M., Smith H. J., Nicholls P. J., Simons C. Inhibitors of enzymes of androgen biosynthesis: cytochrome P45017α and 5α-steroid reductase. Natural Product Reports, 1998, vol. 15, no. 5, pp. 495‒512. https://doi.org/10.1039/A815495y

35. Panada J., Klopava V., Kulahava T., Koran S., Faletrov Y., Frolova N., Fomina E., Shkumatov V. Differential induction of C6 glioma apoptosis and autophagy by 3β-hydroxysteroid-indolamine conjugates. Steroids, 2023, vol. 200, art. 109326. https://doi.org/10.1016/j.steroids.2023.109326


Review

Views: 150


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)