Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Influence of some abiotic factors on the apple stressassociated protein gene expression profiles

https://doi.org/10.29235/1029-8940-2024-69-2-143-152

Abstract

In plants, stress-associated proteins (SAP) play a crucial role in responding to adverse biotic and abiotic factors. In this study, we evaluated the expression profiles of 14 apple SAP genes (MdSAP) under the influence of low and high temperatures, as well as salinity, using the quantitative polymerase chain reaction (qPCR). The results showed that the most significant changes in expression levels were observed in the genes MdSAP11, MdSAP2, and MdSAP3 under high temperature conditions, MdSAP1, MdSAP2, MdSAP4, and MdSAP6 under low temperature conditions, and MdSAP1, MdSAP8, and MdSAP11 under salt stress. Furthermore, there was a tendency for gene expression to increase at 2 and/or 4 hours of exposure followed by a decrease at 24 hours. The analysis of the correlation between the expression levels of MdSAP genes revealed both positive and negative linear relationships.

These findings will help elucidate the specific roles of individual SAP genes in shaping the apple stress response to low and high temperatures, as well as salinity.

About the Authors

P. V. Kuzmitskaya
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Polina V. Kuzmitskaya – Ph. D. (Biol.), Senior Researcher

34, F. Skoriny Str., 220141, Minsk



K. S. Karaleva
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Katsiaryna S. Karaleva – Junior Researcher

34, F. Skoriny Str., 220141, Minsk



O. Yu. Urbanovich
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Oksana Yu. Urbanovich – D. Sc. (Biol.), Associate Professor, Head of the Laboratory

34, F. Skoriny Str., 220141, Minsk



References

1. Zhang X.-Z., Zheng W.-J., Cao X.-Y., Cui X.-Y., Zhao S.-P., Yu T.-F. [et al.]. Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in Arabidopsis and soybean. Frontiers in Plant Science, 2019, vol. 10, pp. 1–10. https://doi.org/10.3389/fpls.2019.01453

2. Giri J., Dansana P. K., Kothari K. S., Sharma G., Vij S., Tyagi A. K. SAPs as novel regulators of abiotic stress response in plants. Bioessays, 2013, vol. 35, no. 7, pp. 639–648. https://doi.org/10.1002/bies.201200181

3. Opipari A. W. (Jr.), Boguski M. S., Dixit V. M. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. Journal of Biological Chemistry, 1990, vol. 265, no. 25, pp. 14705–14708.

4. Dixit V. M., Green S., Sarma V., Holzman L. B., Wolf F. W., O’Rourke K., Ward P. A., Prochownik E. V., Marks R. M. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. Journal of Biological Chemistry, 1990, vol. 265, no. 5, pp. 2973–2978.

5. Rebagliati M. R., Weeks D. L., Harvey R. P., Melton D. A. Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell, 1985, vol. 42, no. 3, pp. 769–777. https://doi.org/10.1016/0092-8674(85)90273-9

6. Vij S., Tyagi A. K. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger (s) in rice and their phylogenetic relationship with Arabidopsis. Molecular Genetics and Genomics, 2006, vol. 276, no. 6, pp. 565–575. https://doi.org/10.1016/j.gene.2014.09.017

7. Gao W., Long L., Tian X., Jin J., Liu H., Zhang H., Xu F., Song C. Genome-wide identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cotton. Molecular Genetics and Genomics, 2016, vol. 291, no. 6, pp. 2199–2213. https://doi.org/10.1007/s00438-016-1252-6

8. Solanke A. U., Sharma M. K., Tyagi A. K., Sharma A. K. Characterization and phylogenetic analysis of environmental stressresponsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Molecular Genetics and Genomics, 2009, vol. 282, no. 2, pp. 153–164. https://doi.org/10.1007/s00438-009-0455-5

9. Jia H., Li J., Zhang J., Ren Y., Hu J., Lu M. Genome-wide survey and expression analysis of the stress-associated protein gene family in desert poplar, Populus euphratica. Tree Genetics and Genomes, 2016, vol. 12, no. 4, p. 78. https://doi.org/10.1007/s11295-016-1033-8

10. Wang Z., Kuang J., Han B., Chen S., Liu A. Genomic characterization and expression profiles of stress-associated proteins (SAPs) in castor bean (Ricinus communis). Plant Diversity, 2020, vol. 43, no. 2, pp. 152–162. https://doi.org/10.1016/j.pld.2020.07.010

11. Lai W., Zhou Y., Pan R., Liao L., He J., Liu H., Yang Y., Liu S. Identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cucumber. Plants, 2020, vol. 9, no. 3, art. 400, pp. 1–16. https://doi.org/10.3390/plants9030400

12. Ströher E., Wang X.-J., Roloff N., Klein P., Husemann A., Dietz K. J. Redox-dependent regulation of the stress-induced zincfinger protein SAP12 in Arabidopsis thaliana. Molecular Plant, 2009, vol. 2, no. 2, pp. 357–367. https://doi.org/10.1093/mp/ssn084

13. Zhang Y., Lan H., Shao Q., Wang R., Chen H., Tang H., Zhang H., Huang J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). Journal of Experimental Botany, 2016, vol. 67, no. 1, pp. 315–326. https://doi.org/10.1093/jxb/erv464

14. Tyagi H., Jha S., Sharma M., Giri J., Tyagi A. K. Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Science, 2014, vol. 225, pp. 68–76. https://doi.org/10.1016/j.plantsci.2014.05.016

15. Mukhopadhyay A., Vij S., Tyagi A. K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences, 2004, vol. 101, no. 16, pp. 6309– 6314. https://doi.org/10.1073/pnas.0401572101

16. Kuzmitskaya P. V., Urbanovich O. Yu., Kil’chevskii A. V. Identification of genes encoding stress-associated proteins containing the domains А20/AN1 in the apple genome in silico and analysis of their phylogenetic relationship. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2018, no. 62, pp. 455–462 (in Russian).

17. Dong Q., Duan D., Zhao S., Xu B., Luo J., Wang Q., Huang D., Liu C., Li C., Gong X., Mao K., Ma F. Genome-wide analysis and cloning of the apple stress-associated protein gene family reveals MdSAP15, which confers tolerance to drought and osmotic stresses in transgenic Arabidopsis. International Journal of Molecular Sciences, 2018, vol. 19, no. 9, art. 2478. https://doi.org/10.3390/ijms19092478

18. Jaakola L., Pirttilä A. M., Halonen M., Hohtola A. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Molecular Biotechnology, 2001, vol. 19, no. 2, pp. 201–203. https://doi.org/10.1385/MB:19:2:201

19. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M. [et al.]. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009, vol. 55, no. 4, pp. 611–622. https://doi.org/10.1373/clinchem.2008.112797

20. Zhao T., Liang D., Wang P., Liu J., Ma F. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Molecular Genetics and Genomics, 2012, vol. 287, no. 5, pp. 423–436. https://doi.org/10.1007/s00438-012-0687-7

21. Rao X., Huang X., Zhou Z., Lin X. An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, Bioinformatics and Biomathematics, 2013, vol. 3, no. 3, pp. 71–85.

22. Pearce S., Ferguson A., King J., Wilson Z. A. FlowerNet: a gene expression correlation network for anther and pollen development. Journal of Plant Physiology, 2015, vol. 167, no. 4, pp. 1717–1730. https://doi.org/10.1104/pp.114.253807

23. Peng F. Y., Weselake R. J. Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genomics, 2011, vol. 12, art. 286. https://doi.org/10.1186/1471-2164-12-286

24. Wang S., Yin Y., Ma Q., Tang X., Hao D., Xu Y. Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biology, 2012, vol. 12, art. 138. https://doi.org/10.1186/1471-2229-12-138

25. Ghanbarian A. T., Hurst L. D. Neighboring Genes Show Correlated Evolution in Gene Expression. Molecular Biology and Evolution, 2015, vol. 32, no. 7, pp. 1748–1766. https://doi.org/10.1093/molbev/msv053

26. Barah P., Jayavelu N. D., Rasmussen S., Nielsen H. B., Mundy J., Bones A. M. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics, 2013, vol. 14, no. 1, art. 722. https://doi.org/10.1186/1471-2164-14-722


Review

Views: 153


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)