Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Urban population of blackbird (Turdus merula) in Minsk: identical scenario of the origin two centuries later

https://doi.org/10.29235/1029-8940-2024-69-2-134-142

Abstract

A recently formed urban group of blackbirds in Minsk differs from forest populations of the species in several ecological characteristics. In the western part of Europe, blackbirds began moving into cities around two hundred years ago, starting from Germany. It was assumed that later birds from the urban population began moving from one city to another in the eastern, northern, and southern directions. Based on the results of the molecular genetic analysis, it is clarified whether the blackbird population in Belarus is a single population or whether there exists a differentiation between groups from urban and forest habitats. To perform a microsatellite analysis, samples were collected from urban (п = 15) and forest (п = 21) blackbirds from different regions of Belarus.

It was discovered that there is a constant exchange of genes within and between the populations from natural and urban habitats. The obtained data suggest the local origin of blackbirds in Minsk, which means that the formation of the urban birds is happening in the same way as in Germany almost two centuries ago.

About the Authors

V. V. Sakhvon
Belarusian State University
Belarus

Vital V. Sakhvon – Ph. D. (Biol.), Associate Professor, Deputy Dean

4, Nezavisimosti Ave., 220030, Minsk



K. V. Homel
Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources
Belarus

Kanstantsin V. Homel ‒ Ph. D. (Biol.), Leading Researcher

27, Akademicheskaya Str., 220072, Minsk



A. A. Semionova
Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources
Belarus

Anastasiya A. Semionova – Researcher

27, Akademicheskaya Str., 220072, Minsk



M. E. Nikiforov
Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources
Belarus

Michail E. Nikiforov – Academician, D. Sc. (Biol.), Head of the Laboratory

27, Akademicheskaya Str., 220072, Minsk



References

1. Ferenc M., Sedláček O., Fuchs R., Dinetti M., Fraissinet M., Storch D. Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. Global Ecology and Biogeography, 2014, vol. 23, no. 4, pp. 479–489. https://doi.org/10.1111/geb.12130

2. Shochat E. Credit or debit? Resource input changes population dynamics of city-slicker birds. OIKOS, 2004, vol. 106, no. 3, pp. 622–626. https://doi.org/10.1111/j.0030-1299.2004.13159.x

3. Shochat E., Warren P. S., Faeth S. H., McIntyre N. E., Hope D. From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology and Evolution, 2006, vol. 21, no. 4, pp. 186–191. https://doi.org/10.1016/j.tree.2005.11.019

4. Faeth S. H., Shochat E., Marussich W. A. Trophic dynamics in urban communities. BioScience, 2005, vol. 55, no. 5, pp. 399–407. https://doi.org/10.1641/0006-3568(2005)055[0399:TDIUC]2.0.CO;2

5. Tomiałojć L. Human initiation of synurbic populations of waterfowl, raptors, pigeons and cage birds. Ecology and conservation of birds in urban environments. Cham, 2017, pp. 271–286. https://doi.org/10.1007/978-3-319-43314-1_14

6. Sakhvon V., Kövér L. Distribution and habitat preferences of the urban Woodpigeon (Columba palumbus) in the north-eastern breeding range in Belarus. Landscape and Urban Planning, 2020, vol. 201, art. 103846. https://doi.org/10.1016/j.landurbplan.2020.103846

7. Wysocki D. Biometrical analysis of an urban population of the Blackbird (Turdus merula) in Szczecin (NW Poland). Ring, 2002, vol. 24, no. 2, pp. 69–76.

8. Evans K. L., Hatchwell B. J., Parnell M., Gaston K. J. A conceptual framework for the colonization of urban areas: the blackbird Turdus merula as a case study. Biological Reviews, 2010, vol. 85, no. 3, pp. 643–667. https://doi.org/10.1111/j.1469-185X.2010.00121.x

9. Mendes S., Colino-Rabanal V., Peris S. Bird song variations along an urban gradient: The case of the European blackbird (Turdus merula). Landscape and Urban Planning, 2011, vol. 99, no. 1, pp. 51–57. https://doi.org/10.1016/j.landurbplan.2010.08.013

10. Møller A. P., Jokimäki J., Skorka P., Tryjanowski P. Loss of migration and urbanization in birds: a case study of the blackbird (Turdus merula). Oecologia, 2014, vol. 175, pp. 1019–1027. https://doi.org/10.1007/s00442-014-2953-3

11. Russ A., Lučeničová T., Klenke R. Altered breeding biology of the European blackbird under artificial light at night. Journal of Avian Biology, 2017, vol. 48, no. 8, pp. 1114–1125. https://doi.org/10.1111/jav.01210

12. Partecke J., Van’t Hof T., Gwinner E. Differences in the timing of reproduction between urban and forest European blackbirds (Turdus merula): result of phenotypic flexibility or genetic differences? Proceedings of the Royal Society B, 2004, vol. 271, no. 1552, pp. 1995–2001. https://doi.org/10.1098/rspb.2004.2821

13. Partecke J., Gwinner E., Bensch S. Is urbanisation of European blackbirds (Turdus merula) associated with genetic differentiation? Journal fur Ornithology, 2006, vol. 147, no. 4, pp. 549–552. https://doi.org/10.1007/s10336-006-0078-0

14. Andrzejewski R., Babińska-Werka J., Gliwicz J., Goszczyński J. Synurbization processes in an urban population of Apodemus agrarius. I. Characteristics of population in urbanization gradient. Acta Theriologicae, 1978, vol. 23, no. 20, pp. 341–358. https://doi.org/10.4098/AT.arch.78-24

15. Gliwicz J., Goszczyński J., Luniak M. Characteristic features of animal populations under synurbanization – the case of the Blackbird and the striped field mouse. Memorabilia Zoologica, 1994, vol. 49, pp. 237–244.

16. Feoktistova N. Y., Meschersky I. G., Bogomolov P. L., Meschersky S. I., Poplavskaya N. S., Chunkov M. M., Yufereva V. V., Tel’pov V. A., Surov A. V. Genetic Structure of Urban and Suburban Populations of Common Hamster (Cricetus cricetus) in Ciscaucasia. Russian Journal of Genetics, 2019, vol. 55, no. 3, pp. 337–348. https://doi.org/10.1134/S1022795419020054

17. Badyaev A. V., Young R. L., Oh K. P., Addison C. Evolution on a local scale: developmental, functional, and genetic bases of divergence in bill form and associated changes in song structure between adjacent habitats. Evolution, 2008, vol. 62, no. 8, pp. 1951–1964. https://doi.org/10.1111/j.1558-5646.2008.00428.x

18. Tomiałojć L. The urban population of the wood pigeon Columba palumbus Linneaus, 1758 in Europe – its origin, increase and distribution. Acta Zoologica Cracoviensia, 1976, vol. 21, pp. 586–631.

19. Sakhvon V. V., Dombrovskii V. Ch. Interannual dynamics of breeding bird assemblage within the republican natural monument “Dubrava” (Minsk). Zhurnal Belorusskogo gosudarstvennogo universiteta. Biologiya = Journal of the Belarusian State University. Biology, 2018, no. 3, pp. 48–54 (in Russian).

20. Sakhvon V. V., Fedorinchik K. A. Interannual dynamics of breeding bird assemblage within the Central Botanical Garden of the National Academy of Sciences of Belarus (Minsk). Zhurnal Belorusskogo gosudarstvennogo universiteta. Biologiya = Journal of the Belarusian State University. Biology, 2020, no. 2, pp. 66–74 (in Russian).

21. Sakhvon V. V. Nesting features of Blackbird (Turdus merula) in urban green spaces in Minsk. Zhurnal Belorusskogo gosudarstvennogo universiteta. Ekologiya = Journal of the Belarusian State University. Ecology, 2021, vol. 4, pp. 46–53 (in Russian).

22. Matschiner M., Salzburger W. TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics, 2009, vol. 25, no. 15, pp. 1982–1983. https://doi.org/10.1093/bioinformatics/btp303

23. Chakraborty R., de Andrade M., Daiger S. P., Budowle B. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Annals of Human Genetics, 1992, vol. 56, no. 1, pp. 45–57. https://doi.org/10.1111/j.1469-1809.1992.tb01128.x

24. Brookfield J. F. Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology, 1996, vol. 5, no. 3, pp. 453–455. https://doi.org/10.1111/j.1365-294x.1996.tb00336.x

25. Raymond M., Rousset F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. Journal of Heredity, 1995, vol. 86, no. 3, pp. 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

26. Rousset F. GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 2008, vol. 8, no. 1, pp. 103‒106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

27. Peakall R., Smouse P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006, vol. 6, no. 1, pp. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

28. Peakall R., Smouse P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012, vol. 28, no. 19, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

29. Cornuet J. M., Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 1997, vol. 144, no. 4, pp. 2001–2014. https://doi.org/10.1093/genetics/144.4.2001

30. Weir B., Cockerham C. C. Estimating F-statistics for the analysis of population-structure. Evolution, 1984, vol. 38, no. 6, pp. 1358–1370. https://doi.org/10.2307/2408641

31. Keenan K., Mcginnity P., Cross T. F., Crozier W. W., Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 2013, vol. 4, no. 8, pp. 782–788. http://dx.doi.org/10.1111/2041-210X.12067

32. Excoffier L., Lischer H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 2010, vol. 10, no. 3, pp. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

33. Pritchard J. K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, vol. 155, no. 2, pp. 945–959. https://doi.org/10.1093/genetics/155.2.945

34. Earl D. A., von Holdt B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resources, 2012, vol. 4, no. 2, pp. 359–361. https://doi.org/10.1007/s12686-011-9548-7

35. Kopelman N. M., Mayzel J., Jakobsson M., Rosenberg N. A., Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 2015, vol. 15, no. 5, pp. 1179–1191. https://doi.org/10.1111/1755-0998.12387

36. Belkir K., Borsa P., Chikhi L., Raufaste N., Bonhomme F., Belkhirr K. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France). Available at: https://kimura.univ-montp2.fr/genetix/ (accessed 04.03.2024).

37. Hammer Ø., Harper D. A. T., Ryan P. D. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica, 2001, vol. 4, no. 1. 9 p.

38. Evans K. L., Gaston K. J., Frantz A. C., Simeoni M., Sharp S. P., McGowan A., Dawson D. A., Walasz K., Partecke J., Burke T., Hatchwell B. J. Independent colonization of multiple urban centres by a formerly forest specialist bird species. Proceedings of the Royal Society B: Biological Sciences, 2009, vol. 276, no. 1666, pp. 2403–2410. https://doi.org/10.1098/rspb.2008.1712


Review

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)