Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Effect of proline-containing oligopeptides on peculiarities of operant conditioning of behavior in outbred rats

https://doi.org/10.29235/1029-8940-2024-69-2-120-133

Abstract

In experiments on male Wistar rats, the effect of synthetic derivatives of arginine-vasopressin (tetrapeptides N-Ac-DSer-Pro-DArg-Gly-NH2 (I) (1.0 μg/kg, i. n.), N-Ac-Trp -Pro-Arg-Gly-NH2 (II) (1.0 μg/kg, i. n.) on the dynamics of the level of anxiety (LA) and the ability to reproduce operant reactions (OR) against the background of 24-hour deprivation of the paradoxical phase of sleep (REM sleep deprivation) in rats. Statistically, N-Ac-Trp-Pro-Arg-Gly-NH2   significantly ( p < 0.05) reduced the LA of rats exposed to stress, increasing the proportion of individuals in the population that had spent time in the central square of the actometer chamber not less than 10 % of the total duration of actometry. The oligopeptide N-Ac-DSer-Pro-DArg-Gly-NH2 had a statistically significant ( p < 0.05) corrective effect on the ability to reproduce the developed OR of pressing the pedal in rodents (Wistar rats of an unranked population and Wistar individuals with low LA) subjected to REM sleep deprivation. Thus, both studied compounds did not cause cognitive impairment, and N-Ac-DSer-ProDArg-Gly-NH2 improved mnestic functions against the background of REM sleep deprivation. The results of assessing the level of general motor activity indicated the absence of side sedative effects in I (1.0 μg/kg) and II (1.0 μg/kg ‒ at a dose that causes an anxiolytic effect when administered II). The data obtained indicate the anxiolytic effect of N-Ac-Trp-Pro-Arg-GlyNH2, the positive mnemotropic effect of N-Ac-DSer-Pro-DArg-Gly-NH2, and a low likelihood of developing side effects in relation to the central nervous system against the background their applications.

About the Authors

E. V. Kravchenko
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Elena V. KravchenkoPh. D. (Biol.), Associate Professor, Leading Researcher

5/2, Kuprevich Str., 220141, Minsk



O. N. Savanets
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Oksana N. SavanetsPostgraduate student, Junior Researcher

5/2, Kuprevich Str., 220141, Minsk



L. M. Olgomets
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Lyubov M. OlgometsSenior Researcher

5/2, Kuprevich Str., 220141, Minsk



K. V. Borodina
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Kseniya V. BorodinaResearcher

5/2, Kuprevich Str., 220141, Minsk



V. P. Golubovich
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Vladimir P. GolubovichD. Sc. (Biol.), Professor

5/2, Kuprevich Str., 220141, Minsk



R. D. Zilberman
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Roman D. ZilbermanHead of the Laboratory

5/2, Kuprevich Str., 220141, Minsk



N. A. Bizunok
Belarusian State Medical University
Belarus

Natalia A. Bizunok ‒ D. Sc. (Med.), Professor, Head of the Department

83, Dzerzhinski Ave., 220116, Minsk



B. V. Dubovik
Belarusian State Medical University
Belarus

Boris V. Dubovik ‒ D. Sc. (Med.), Professor

83, Dzerzhinski Ave., 220116, Minsk



References

1. Garakani A., Murrough J. W., Freire R. C., Thom R. P., Larkin K., Buono F. D., Iosifescu D. V. Pharmacotherapy of anxiety disorders: Current and emerging treatment options. Frontiers in Psychiatry, 2020, vol. 11, art. 595584. https://doi.org/10.3389/fpsyt.2020.595584

2. Penninx B. W., Pine D. S., Holmes E. A., Reif A. Anxiety disorders. Lancet, 2021, vol. 397, no. 10277, pp. 914–927. https://doi.org/10.1016/S0140-6736(21)00359-7

3. Fedin A. I. Anxiety and depressive disorders in general practice. Pul’monologiya [Pulmonology], 2022, vol. 32, no. 2 (suppl.), pp. 35–41 (in Russian).

4. On approval of clinical protocols: Decree of the Ministry of Health of the Republic of Belarus, November 8, 2022, No. 108. National legal Internet portal of the Republic of Belarus. Available at: https://pravo.by/document/?guid=12551&p0=W22339960p (accessed 25.10.2023) (in Russian).

5. Goldschen-Ohm M. P. Benzodiazepine modulation of GABAA receptors: A mechanistic perspective. Biomolecules, 2022, vol. 12, no. 12, art. 1784. https://doi.org/10.3390/biom12121784

6. Kalitin K. Yu., Spasov A. A., Mukha O. Yu., Pridvorov G. V., Lipatov V. A. Pharmacological targets and the mechanism of action of antipsychotic agents in the framework of the neurochemical theory of the pathogenesis of schizophrenia. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova [Russian Physiological Journal named after I. M. Sechenov], 2021, vol. 107, no. 8, pp. 927–954 (in Russian).

7. Sherer L. M., Catudio Garrett E., Morgan H. R., Brewer E. D., Sirrs L. A. [et al.]. Octopamine neuron dependent aggression requires dVGLUT from dual-transmitting neurons. PLoS Genetics, 2020, vol. 16, no. 2, p. e1008609. https://doi.org/10.1371/journal.pgen.1008609

8. Belokoskova S. G., Tsikunov S. G. Neuropeptide vasopressin and memory process. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii [Reviews on clinical pharmacology and drug therapy], vol. 12, no. 3, pp. 3–12 (in Russian).

9. Rigney N., de Vries G. J., Petrulis A. Modulation of social behavior by distinct vasopressin sources. Frontiers in Endocrinology, 2023, no. 14, art. 1127792. https://doi.org/10.3389/fendo.2023.1127792

10. Egashira N., Mishima K., Iwasaki K., Oishi R., Fujiwara M. New topics in vasopressin receptors and approach to novel drugs: role of the vasopressin receptor in psychological and cognitive functions. Journal of Pharmacological Sciences, 2009, vol. 109, no. 1, pp. 44–49. https://doi.org/10.1254/jphs.08r14fm

11. Yang C., Zhang X., Gao J., Wang M., Yang Z. Arginine vasopressin ameliorates spatial learning impairments in chronic cerebral hypoperfusion via V1a receptor and autophagy signaling partially. Translational Psychiatry, 2017, no. 7, p. e1174. https://doi.org/10.1038/tp.2017.121

12. Cragg B., Guangchen J., Neugebauer V. Differential contributions of vasopressin V1A and oxytocin receptors in the amygdala to pain-related behaviors in rats. Molecular Pain, 2016, vol. 12, art. 1744806916676491. https://doi.org/10.1177/1744806916676491

13. Wallace T., Steinfeld T., Poffe A., Pavoni V., Gerrard Ph. A., Martin W. J. Vasopressin 1A (V1A) receptor antagonists reduce anxiety in marmosets. Biological Psychiatry, 2020, vol. 87, no. 9, suppl., p. S239. https://doi.org/10.1016/j.biopsych.2020.02.620

14. Tye K. M., Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews Neuroscience, 2012, vol. 13, pp. 251–266. https://doi.org/10.1038/nrn3171

15. The role of the amygdala in social behavior. Biomolecule. Available at: https://biomolecula.ru/articles/rol-mindalevidnogotela-v-sotsialnom-povedenii (accessed 25.10.2023) (in Russian).

16. Gouveia F. V., Hamani C., Fonoff E. T., Brentani H., Alho E. J. L., de Morais R. M. C. B., de Souza A. L., Rigonatti S. P., Martinez R. C. R. Amygdala and hypothalamus: Historical overview with focus on aggression. Neurosurgery, 2019, vol. 85, no. 1, pp. 11–30. https://doi.org/10.1093/neuros/nyy635

17. Borodina K. V., Savanets O. N., Pustyul’ga E. S., Martinovich V. P., Kravchenko E. V., Ol’gomets L. M., Golubovich V. P. Synthesis and investigation of the antidepressant properties of novel analogs of arginine-vasopressin. Bioorganicheskaya khimiya [Bioorganic chemistry], 2022, vol. 48, no. 3, pp. 357–370 (in Russian).

18. Barson J. R., Mack N. R., Gao W.-J. The paraventricular nucleus of the thalamus is an important node in the emotional processing network. Frontiers in Behavioral Neuroscience, 2016, vol. 14, art. 598469. https://doi.org/10.3389/fnbeh.2020.598469

19. Duque-Wilckens N., Steinman M. Q., Laredo S. A., Hao R., Perkeybile A. M., Bales K. L., Trainor B. C. Inhibition of vasopressin V1a receptors in the medioventral bed nucleus of the stria terminalis has sex- and context-specific anxiogenic effects. Neuropharmacology, 2016, vol. 110, pt. A, pp. 59–68. https://doi.org/10.1016/j.neuropharm.2016.07.018

20. Fomin A. V., Kirpichenko A. A., Fomin F. A. Anxiety and depression in patients in a surgical hospital. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta [Bulletin of Vitebsk State Medical University], 2014, vol. 13, no. 3, pp. 139–145 (in Russian).

21. Tai F., Wang C., Deng X., Li R., Guo Z., Quan H., Li S. Treadmill exercise ameliorates chronic REM sleep deprivationinduced anxiety-like behavior and cognitive impairment in C57BL/6J mice. Brain Research Bulletin, 2020, vol. 164, pp. 198–207. https://doi.org/10.1016/j.brainresbull.2020.08.025

22. Lezak K. R., Missig G., Carlezon Jr W. A. Behavioral methods to study anxiety in rodents. Dialogues in Clinical Neuroscience, 2017, vol. 19, no. 2, pp. 181–191. https://doi.org/10.31887/DCNS.2017.19.2/wcarlezon

23. Kravchenko E. V., Sinkevich N. M. Influence of anxiety level on efficiency of operant activity of rats. Vestsi Natsyyanal’nai akademii navuk Belarusi. Serуya medуtsynskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2008, no. 2, pp. 20–25 (in Russian).

24. Tucker L. B., McCabe J. T. Measuring anxiety-like behaviors in rodent models of traumatic brain injury. Frontiers in Behavioral Neuroscience, 2021, vol. 15, art. 682935. https://doi.org/10.3389/fnbeh.2021.682935

25. Chen S.-F., Chuang C.-Y., Chao C.-C., Yang Y.-H., Chu C.-Y., Yao C.-Y., Su Y.-C., Huang Y.-H., Liao R.-M. Task-dependent differences in operant behaviors of rats with acute exposure to high ambient temperature: A potential role of hippocampal dopamine reuptake transporters. Frontiers in Behavioral Neuroscience, 2019, vol. 13, art. 15. https://doi.org/10.3389/fnbeh.2019.00015

26. Yao S., Kendrick K. M. Effects of intranasal administration of oxytocin and vasopressin on social cognition and potential routes and mechanisms of action. Pharmaceutics, 2022, vol. 14, no. 2, art. 323. https://doi.org/10.3390/pharmaceutics14020323

27. Katel’nikova A. E., Kryshen’ K. L., Zueva A. A., Makarova M. N. Intranasal introduction to laboratory. Laboratornye zhivotnye dlya nauchnykh issledovanii [Laboratory animals for scientific research], 2019, no. 2, art. 9 (in Russian).

28. Feyissa D. D., Aher Y. D., Engidawork E., Höger H., Lubec G., Korz V. Individual differences in male rats in a behavioral test battery: A multivariate statistical approach. Frontiers in Behavioral Neuroscience, 2017, vol. 11, art. 26. https://doi.org/10.3389/fnbeh.2017.00026

29. Moriya J. Interactive effects trait and state anxiety on visual spatial working memory capacity. Psychologia, 2020, vol. 62, no. 1, pp. 29–45. https://doi.org/10.2117/psysoc.2020-B003

30. Tchekalarova J., Krushovlieva D., Ivanova P., Kortenska L. Spontaneously hypertensive rats vs. Wistar Kyoto and Wistar rats: An assessment of anxiety, motor activity, memory performance, and seizure susceptibility. Physiology and Behavior, 2023, vol. 269, art. 114268. https://doi.org/10.1016/j.physbeh.2023.114268

31. Nekhoroshkova A. N., Gribanov A. V., Dzhos Yu. S. Problem of anxiety as difficult psychophysiological phenomenon. Ekologiya cheloveka [Human ecology], 2014, no. 6, pp. 47–54 (in Russian).

32. Uyanaev A. A., Fisenko V. P., Khitrov N. K. Influence of noopept and afobazole on the formation of acquired helplessness neurosis in rats. Byulleten’ eksperimental’noi biologii i meditsiny [Bulletin of experimental biology and medicine], 2003, vol. 136, no. 8, pp. 187–189 (in Russian).

33. Ward R. T., Lotfi S., Sallmann H., Lee H. J., Larson C. L. State anxiety reduces working memory capacity but does not impact filtering cost for neutral distracters. Psychophysiology, 2020, vol. 57, no. 10, p. e13625. https://doi.org/10.1111/psyp.13625


Review

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)