Genetic diversity of apple trees in the old orchard of the Central Botanical Garden of the National Academy оf Sciences of Belarus
https://doi.org/10.29235/1029-8940-2024-69-1-57-67
Abstract
Based on the sequence of the Golden Delicious apple genome, whose nucleotide sequence is located in the GenBank database, the design of molecular markers of SSR type that limit the area of tetra- and hexanucleotide repeats was carried out in silico. The most informative of them were selected, which showed clear peaks on capillary electrophoresis and made it possible to reveal a high level of polymorphism in certain apple genome regions. The developed SSR markers can be effectively used for the genetic diversity assession and DNA identification of apple varieties, establishment of the varietal correspondence. These markers were used to analyze the genetic diversity of apple trees in the old orchard of the Central Botanical Garden of the National Academy of Sciences of Belarus (CBG) where trees were planted from 1932 to 1940. It is shown that the trees growing in the garden are genetically close to old local varieties, as well as to individual foreign ones. It is established that among the trees of the CBG old orchard there are such varieties as Antonovka obyknovennaya, Minskoe, Papirovka. Wealthy, Melba, Bogatyr’. The obtained results will be used to save the genetic resources of the fruit crop valuable for the country, which is an apple tree, as well as to develop a design project of a new fruit plants collection-exposition when reconstructing the area of old plantings.
About the Authors
A. A. FaminaBelarus
Alena A. Famina ‒ Ph. D. (Biol.), Senior Researcher
34, F. Skorina Str., 220141, Minsk
A. N. Zainchkovskaya
Belarus
Anna N. Zainchkovskaya ‒ Junior Researcher
34, F. Skorina Str., 220141, Minsk
Р. V. Kuzmitskaya
Belarus
Polina V. Kuzmitskaya ‒ Ph. D. (Biol.), Senior Researcher
34, F. Skorina Str., 220141, Minsk
О. Yu. Urbanovich
Belarus
Oksana Yu. Urbanovich ‒ D. Sc. (Biol.), Associate Professor, Head of the Laboratory
34, F. Skorina Str., 220141, Minsk
Р. А. Pashkevich
Belarus
Pavel A. Pashkevich ‒ Ph. D. (Agricult.), Head of the Laboratory
2v, Surganov Str., 220012, Minsk
L. S. Sidor
Belarus
Larisa S. Sidor ‒ Researcher
2v, Surganov Str., 220012, Minsk
В. Yu. Anoshenko
Belarus
Boris Yu. Anoshenko ‒ Ph. D. (Biol.), Associate Professor, Leading Researcher
2v, Surganov Str., 220012, Minsk
L. V. Goncharova
Belarus
Lyudmila V. Goncharova ‒ Ph. D. (Biol.), Associate Professor, Deputy Director for Research and Innovation
2v, Surganov Str., 220012, Minsk
References
1. Urbanovich O. Yu. Molecular methods of identification and genotyping of apple and pear. Minsk, Pravo i ekonomika Publ., 2013. 208 p. (in Russian).
2. Meland M., Aksic M. F., Frøynes O., Konjic A., Lasic L., Pojskic N., Gasi F. Genetic identity and diversity of apple accessions within a candidate collection for the Norwegian National Clonal Germplasm Repository. Horticulturae, 2022. vol. 8, no. 7, p. 630. https://doi.org/10.3390/horticulturae8070630
3. Urbanovich O. Yu., Kozlovskaya Z. A., Kartel’ N. A. Passportization of apple varieties based on SSR markers. Doklady Natsional’noi akademii nauk Belarusi [Reports of the National Academy of Sciences of Belarus], 2008, vol. 52, no. 5, pp. 93‒99 (in Russian).
4. Urbanovich O. Yu., Kozlovskaya Z. A., Kartelʼ N. A. Guidelines for the identification and certification of apple and pear varieties based on DNA markers. Minsk, Pravo i ekonomika Publ., 2011. 31 p. (in Russian).
5. Mažeikienė I., Šikšnianienė J. B., Baniulis D., Gelvonauskienė D., Frercks B., Starkus A., Žebrauskienė A., Stanys V. SSR analysis based on molecular characterisation of apple germplasm in Lithuania. Zemdirbyste = Agriculture, 2019, vol. 106, no. 2, pp. 159‒166. https://doi.org/10.13080/z-a.2019.106.021
6. Liebhard R., Gianfranceschi L., Koller B., Ryder C. D., Tarchini R., Van De Weg E., Gessler C. Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Molecular Breeding, 2002, vol. 10, no. 4, pp. 217‒241. https://doi.org/10.1023/A:1020525906332
7. Nishio S., Kunihisa M., Taniguchi F., Kajiya-Kanegae H., Moriya S., Takeuchi Y., Sawamura Y. Development of SSR databases available for both NGS and capillary electrophoresis in apple, pear and tea. Plants, 2021, vol. 10, no. 12, p. 2796. https://doi.org/10.3390/plants10122796
8. Okonechnikov K., Golosova O., Fursov M., UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012, vol. 28, no. 8, pp. 1166‒1167. https://doi.org/10.1093/bioinformatics/bts091
9. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 1979, vol. 76, no. 10, pp. 5269–5273. https://doi.org/ 10.1073/ pnas.76.10.5269
10. Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 1965, vol. 19, no. 3, pp. 395‒420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x
11. Kloosterman A. D., Budowle B., Daselaar P. PCR-amplification and detection of the human DIS80 VNTR locus. Amplification condition, population genetics and application in forensic analysis. International Journal of Legal Medicine, 1993, vol. 105, no. 5. pp. 257‒264. https://doi.org/10.1007/BF01370382
12. Pritchard J. K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, vol. 155, no. 2, pp. 945‒959. https://doi.org/10.1093/genetics/155.2.945
13. Earl D. A., Vonholdt B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2011, vol. 4, no. 2, pp. 359‒361. https://doi. org/10.1007/s12686-011-9548-7
14. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, vol. 14, no. 8, pp. 2611‒2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
15. Sikorskaite S., Gelvonauskiene D., Stanys V., Baniulis D. Characterization of microsatellite loci in apple (Malus × domestica Borkh.). Žemdirbystė=Agriculture, 2012, vol. 99, no. 2, pp. 131‒138.
16. Richards C. M., Volk G. M., Reilley A. A., Henk A. D., Lockwood D. R., Reeves P. A., Forsline P. L. Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genetics & Genomes, 2009, vol. 6, no. 2, pp. 339‒347. https://doi.org/10.1007/s11295-008-0190-9
17. Urbanovich O. Y., Kazlovskaya Z. A. Identification of apple tree cultivars growing in Belarus using SSR-markers. Acta Horticulturae, 2009, vol. 839, pp. 479‒486. https://doi.org/10.17660/ActaHortic.2009.839.65
18. Marconi G., Ferradini N., Russi L., Concezzi L., Veronesi F., Albertini E. Genetic characterization of the apple germplasm collection in Central Italy: the value of local varieties. Frontiers in Plant Science, 2018, vol. 9, art. 1460. https://doi.org/10.3389/ fpls.2018.01460
19. Cmejlova J., Rejlova M., Paprstein F., Cmejla R. A new one-tube reaction kit for the SSR genotyping of apple (Malus × domestica Borkh.). Plant Science, 2021, vol. 303, p. 110768. https://doi.org/10.1016/j.plantsci.2020.110768
20. Gross B. L., Wedger M. J., Martinez M., Volk G. M., Hale C. Identification of unknown apple (Malus × domestica) cultivars demonstrates the impact of local breeding program on cultivar diversity. Genetic Resources and Crop Evolution, 2018, vol. 65, no. 5, pp. 1317‒1327. https://doi.org/10.1007/s10722-018-0625-6
21. Urrestarazu J., Denancé C., Ravon E., Guyader A., Guisnel R., Feugey L. [et al.]. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biology, 2016, vol. 16, no. 1, art. 130. https://doi.org/10.1186/s12870-016-0818-0
22. Urrestarazu J., Miranda C., Santesteban L. G., Royo J. B. Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genetics & Genomes, 2012, vol. 8, no. 6, pp. 1163‒1180. https:// doi.org/10.1007/s11295-012-0502-y