Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

The role of disulfide bonds in the formation of the spatial structure of the human epidermal growth factor

https://doi.org/10.29235/1029-8940-2023-68-3-183-196

Abstract

The epidermal growth factor (EGF) is a peptide of the EGF-like growth factor family with a common conserved EGF-like domain formed by three intramolecular disulfide bonds. This article describes changes in the spatial structure of EGF and its mutant form with the D46G substitution in its C-terminal fragment observed upon disulfide bonds reduction in the corresponding synthetic peptides in a 0.01 M phosphate buffer (pH = 7.4). The structure was analyzed using circular dichroism spectroscopy, spectrofluorimetry, native polyacrylamide gel electrophoresis, and centrifugal ultrafiltration. It was shown that disulfide bonds reduction changes the geometry of the EGF-like domain towards an increase in the content of the beta-structure, while these peptides remain in dimeric form. According to the molecular modeling results, this can lead to the elongation of the main beta-hairpin of the EGF-like domain, to the elongation of the intermolecular beta-structure, or to the formation of a new beta-structure between the N- and C-terminal fragments of each molecule, which will change the intermolecular interface in dimeric form. Disulfide bonds reduction prevents EGF dimer dissociation to monomers. Under physiological conditions, this can lead to the inability of EGF to form binding sites for EGFR (epidermal growth factor receptor) and to cause its activation.

About the Authors

A. A. Akunevich
Belarusian State Medical University
Belarus

Anastasia A. Akunevich – Postgraduate student.

83, Dzerzhinski Ave., 220083, Minsk



V. V. Khrustalev
Belarusian State Medical University
Belarus

Vladislav V. Khrustalev – D. Sc. (Biol.), Associate Professor, Head of the Department.

83, Dzerzhinski Ave., 220083, Minsk



T. A. Khrustaleva
Institute of Physiology of the National Academy of Sciences of Belarus
Belarus

Tatyana A. Khrustaleva – Ph. D. (Biol.), Scientific Secretary.

28, Akademicheskaya Str., 220072, Minsk



L. V. Kordyukova
A.N. Belozerski Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation

Larisa V. Kordyukova – D. Sc. (Biol.), Leading Researcher.

1-40, Leninskiye gory, 119991, Moscow



A. M. Arutyunyan
A.N. Belozerski Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation

Alexander M. Arutyunyan – Ph. D. (Phys.-Math.), Associate Professor, Head of the Laboratory.

1-40, Leninskiye gory, 119991, Moscow



References

1. Carpenter G., Cohen S. Epidermal growth factor. Annual Review of Biochemistry, 1979, vol. 48, pp. 193–216. https://doi.org/10.1146/annurev.bi.48.070179.001205

2. Wouters M. A., Rigoutsos I., Chu C. K., Feng L. L., Sparrow D. B., Dunwoodie S. L. Evolution of distinct EGF domains with specific functions. Protein Science, 2005, vol. 14, no. 4, pp. 1091–1103. https://doi.org/10.1110/ps.041207005

3. Lu H. S., Chai J. J., Li M., Huang B. R., He C. H., Bi R. C. Crystal structure of human epidermal growth factor and its dimerization. Journal of Biological Chemistry, 2001, vol. 276, no. 37, pp. 34913–34917. https://doi.org/10.1074/jbc.M102874200

4. Akunevich A. A., Khrustalev V. V., Khrustaleva T. A., Poboinev V. V., Shalygo N. V., Stojarov A. N., Arutyunyan A. M., Kordyukova L. V., Sapon Y. G. Equilibrium between dimeric and monomeric forms of human epidermal growth factor is shifted towards dimers in a solution. Protein Journal, 2022, vol. 41, no. 2, pp. 245–259. https://doi.org/10.1007/s10930-022-10051-y

5. Wieduwilt M. J., Moasser M. M. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cellular and Molecular Life Sciences, 2008, vol. 65, no. 10, pp. 1566–1584. https://doi.org/10.1007/s00018-008-7440-8

6. Zhang A., Nakanishi J. Improved anti-cancer effect of epidermal growth factor-gold nanoparticle conjugates by protein orientation through site-specific mutagenesis. Science and Technology of Advanced Materials, 2021, vol. 22, no. 1, pp. 616–626. https://doi.org/10.1080/14686996.2021.1944783

7. Zhao D. Y., Su Y. N., Li Y. H., Yu T. Q., Li J., Tu C. Q. Efficacy and safety of recombinant human epidermal growth factor for diabetic foot ulcers: A systematic review and meta-analysis of randomised controlled trials. International Wound Journal, 2020, vol. 17, no. 4, pp. 1062–1073. https://doi.org/10.1111/iwj.13377

8. Tombling B. J., Wang C. K., Craik D. J. EGF-like and other disulfide-rich microdomains as therapeutic scaffolds. Angewandte Chemie International Edition, 2020, vol. 59, no. 28, pp. 11218–11232. https://doi.org/10.1002/anie.201913809

9. Robinson P. J., Bulleid N. J. Mechanisms of disulfide bond formation in nascent polypeptides entering the secretory pathway. Cells, 2020, vol. 9, no. 9, pp. 1–13. https://doi.org/10.3390/cells9091994

10. Martinovich G. G., Cherenkevich S. N. Redox processes in cells. Minsk, Belarusian State University, 2008. 159 p. (in Russian).

11. Tyo K. E., Liu Z., Petranovic D., Nielsen J. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biology, 2012, vol. 10, art. 16. https://doi.org/10.1186/1741-7007-10-16

12. Pérez-Torres I., Guarner-Lans V., Rubio-Ruiz M. E. Reductive stress in inflammation-associated diseases and the prooxidant effect of antioxidant agents. International Journal of Molecular Sciences, 2017, vol. 18, no. 10, art. 2098. https://doi.org/10.3390/ijms18102098

13. Liu X., Liu K., Nie D., Zhang J., Zhang L., Liu X., Wang J. Case report: Biochemical and clinical phenotypes caused by cysteine substitutions in the epidermal growth factor-like domains of fibrillin-1. Frontiers in Genetics, 2022, vol. 13, art. 928683. https://doi.org/10.3389/fgene.2022.928683

14. Mor-Cohen R., Rosenberg N., Einav Y., Zelzion E., Landau M., Mansour W., Averbukh Y., Seligsohn U. Unique disulfide bonds in epidermal growth factor (EGF) domains of β3 affect structure and function of αIIbβ3 and αvβ3 integrins in different manner. Journal of Biological Chemistry, 2012, vol. 287, no. 12, pp. 8879–8891. https://doi.org/10.1074/jbc.M111.311043

15. Cartee N. M. P., Lee S. J., Young K. Z., Zhang X., Wang M. M. Trans-reduction of cerebral small vessel disease proteins by notch-derived EGF-like sequences. International Journal of Molecular Sciences, 2022. vol. 23, no. 3671, pp. 1–15. https://doi.org/10.3390/ijms23073671

16. Sharma K., Babu P. V., Sasidhar P., Srinivas V. K., Mohan V. K., Krishna E. Recombinant human epidermal growth factor inclusion body solubilization and refolding at large scale using expanded-bed adsorption chromatography from Escherichia coli. Protein Expression and Purification, 2008, vol. 60, no. 1, pp. 7–14. https://doi.org/10.1016/j.pep.2008.02.020

17. Micsonai A., Wien F., Bulyáki É., Kun J., Moussong É., Lee Y. H., Goto Y., Réfrégiers M., Kardos J. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 2018, no. 46, pp. 315–322. https://doi.org/10.1093/nar/gky497

18. Wittig I., Braun H. P., Schägger H. Blue native PAGE. Nature Protocols, 2006, vol. 1, no. 1, pp. 418–428. https://doi.org/10.1038/nprot.2006.62

19. Hirota S., Hattori Y., Nagao S., Taketa M., Komori H., Kamikubo H. [et al.]. Cytochrome c polymerization by successive domain swapping at the C-terminal helix. Proceedings of the National Academy of Sciences, 2010, vol. 107, no. 29, pp. 12854–12859. https://doi.org/10.1073/pnas.1001839107

20. Kozlowski L. P. IPC 2.0: prediction of isoelectric point and pKa dissociation constants. Nucleic Acids Research, 2021, vol. 49, no. 1, pp. 285–292. https://doi.org/10.1093/nar/gkab295

21. Chevallet M., Luche S., Rabilloud T. Silver staining of proteins in polyacrylamide gels. Nature Protocols, 2006, vol. 1, no. 4, pp. 1852–1858. https://doi.org/10.1038/nprot.2006.288

22. Yang J., Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research, 2015, no. 43, pp. 174–181. https://doi.org/10.1093/nar/gkv342

23. Deng H., Jia Y., Zhang Y. 3DRobot: automated generation of diverse and well-packed protein structure decoys. Bioinformatics, 2016, vol. 32 (3), pp. 378–387. https://doi.org/10.1093/bioinformatics/btv601

24. Macindoe G., Mavridis L., Venkatraman V., Devignes M. D., Ritchie D. W. HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Research, 2010, no. 38, pp. 445–449. https://doi.org/10.1093/nar/gkq311

25. Khrustalev V. V., Khrustaleva T. A., Poboinev V. V., Stojarov A. N., Kordyukova L. V., Akunevich A. A. Spectra of tryptophan fluorescence are the result of co-existence of certain most abundant stabilized excited state and certain most abundant destabilized excited state. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 2021, vol. 257, art. 119784. https://doi.org/10.1016/j.saa.2021.119784

26. Lakowicz J. Principles of fluorescence spectroscopy. New York, Springer, 2006. 954 p.

27. Akunevich A. A., Khrustalev V. V., Khrustaleva T. A. Evaluation of the consequences of disulfide bonds reduction on the positions of aromatic amino acid residues in the human epidermal growth factor tertiary structure. Sovremennye dostizheniya khimiko-biologicheskikh nauk v profilakticheskoi i klinicheskoi meditsine: sbornik nauchnykh trudov 2-i Vserossiiskoi nauchnoprakticheskoi konferentsii s mezhdunarodnym uchastiem (Sankt-Peterburg, 2–3 dekabrya 2021 goda) [Modern achievements of chemical and biological sciences in preventive and clinical medicine: collection of scientific papers of the 2nd All-Russian scientific and practical conference with international participation (St. Petersburg, December 2–3, 2021)]. Saint Petersburg, 2021, pp. 21–28 (in Russian).


Review

Views: 367


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)