Obtaining an expression vector containing the nucleotide sequence of the gene encoding Bet v 1 – the major allergen of birch pollen
https://doi.org/10.29235/1029-8940-2023-68-2-104-113
Abstract
An expression vector containing the gene encoding the most common isoform Bet v 1.0101 of the Bet v 1 protein, the major birch pollen allergen, was created for a subsequent expression in the prokaryotic system of Escherichia coli. Total RNA from birch pollen collected in Belarus was used as a matrix. The expression vector pJC40-Веt v 1 was obtained using molecular-genetic methods: cloning, ligation, transformation. The specificity of the cloned fragment was confirmed by sequencing. During the study, 14 rare Escherichia coli codons were identified in the coding part of the cloned gene. The triplets were evenly arranged in the nucleotide sequence; codon clustering was observed only in two cases. The total percentage of rare triplets (8.75 %) and the calculated value of the codon adaptation level (0.57) allow us to predict a sufficiently efficient expression of the studied gene. The data obtained will be used in the synthesis of the recombinant polypeptide Bet v 1.0101.
About the Authors
O. Yu. ParkhomchukBelarus
Olga Yu. Parkhomchuk – Postgraduate student, Junior
Researcher
23, Filimonov Str., 220114, Minsk
E. G. Fomina
Belarus
Elena G. Fomina – D. Sc. (Biol.), Head of the Laboratory
23, Filimonov Str., 220114, Minsk
E. E. Grigorieva
Belarus
Elena E. Grigorieva – Ph. D. (Biol.), Associate Professor, Leading Researcher
23, Filimonov Str., 220114, Minsk
References
1. Erler A., Hawranek T., Krückemeier L., Asam C., Egger M., Ferreira F., Briza P. Proteomic profiling of birch (Betula verrucosa) pollen extracts from different origins. Proteomics, 2011, vol. 11, no. 8, pp. 1486–1498. https://doi.org/10.1002/ pmic.201000624
2. Darnhofer B., Tomin T., Liesinger L., Schittmayer M., Tomazic P. V., Birner-Gruenberger R. Comparative proteomics of common allergenic tree pollens of birch, alder, and hazel. Allergy, 2021, vol. 76, no. 6, pp. 1743–1753. https://doi.org/10.1111/ all.14694
3. Aglas L., Soh W. T., Kraiem A., Wenger M., Brandstetter H., Ferreira F. Ligand binding of PR-10 proteins with a particular focus on the Bet v 1 allergen family. Current Allergy and Asthma Reports, 2020, vol. 20, no. 7, p. 25. https://doi. org/10.1007/s11882-020-00918-4
4. Valenta R., Karaulov A., Niederberger V., Gattinger P., van Hage M., Flicker S. [et al.]. Molecular aspects of allergens and allergy. Advances in Immunology, 2018, vol. 138, pp. 195–256. https://doi.org/10.1016/bs.ai.2018.03.002
5. Filipenko E. A., Kochetov A. V., Kanayama Y., Malinovskii V. I., Shumnyi V. K. Association between PR proteins with ribonuclease activity and plant resistance against pathogenic fungi. Vavilovskii zhurnal genetiki i selektsii [Vavilov journal of genetics and breeding], 2013, vol. 17, no. 2, pp. 326–334 (in Russian).
6. Grutsch S., Fuchs J. E., Ahammer L., Kamenik A. S., Liedl K. R., Tollinger M. Conformational flexibility differentiates naturally occurring Bet v 1 isoforms. International Journal of Molecular Sciences, 2017, vol. 18, no. 6, art. 1192. https:// doi.org/10.3390/ijms18061192
7. Schenk M. F., Cordewener J. H., America A. H., Peters J., Smulders M. J., Gilissen L. J. Proteomic analysis of the major birch allergen Bet v 1 predicts allergenicity for 15 birch species. Journal of Proteomics, 2011, vol. 74, no. 8, pp. 1290– 1300. https://doi.org/10.1016/j.jprot.2011.03.0218
8. Allergen Nomenclature. Available at: http://www.allergen.org/index.php (accessed 30.09.2022).
9. Asam C., Hofer H., Wolf M., Aglas L., Wallner M. Tree pollen allergens-an update from a molecular perspective. Allergy, 2015, vol. 70, no. 10, pp. 1201–1211. https://doi.org/10.1111/all.12696
10. Seutter von Loetzen C., Jacob T., Hartl-Spiegelhauer O., Vogel L., Schiller D., Spörlein-Güttler C., Schobert R., Vieths S., Hartl M. J., Rösch P. Ligand recognition of the major birch pollen allergen Bet v 1 is isoform dependent. PLoS ONE, 2015, vol. 10, no. 6, p. e0128677. https://doi.org/10.1371/journal.pone.0128677
11. Valenta R., Campana R., Niederberger V. Recombinant allergy vaccines based on allergen-derived B cell epitopes. Immunology Letters, 2017, vol. 189, pp. 19–26. https://doi.org/10.1016/j.imlet.2017.04.015
12. World standards of allergen-specific immunotherapy. Scientific review. Available at: http://www.allergen.ru/images/ staloral_10.pdf (accessed 30.09.2022) (in Russian).
13. Gutermuth J., Grosber M., Pfaar O., Bergmann K. C., Ring J. 111 years of allergen-immunotherapy: A long and successful history of the only available disease-modifier in allergic diseases. Allergologie Select, 2022, vol. 6, no. 1, pp. 248–258. https://doi.org/10.5414/ALX02330E
14. Biedermann T., Winther L., Till S. J., Panzner P., Knulst A., Valovirta E. Birch pollen allergy in Europe. Allergy, 2019, vol. 74, no. 7, pp. 1237–1248. https://doi.org/10.1111/all.13758
15. Zhernov Y., Curin M., Khaitov M., Karaulov A., Valenta R. Recombinant allergens for immunotherapy: state of the art. Current Opinion in Allergy and Clinical Immunology, 2019, vol. 19, no. 4, pp. 402–414. https://doi.org/10.1097/ ACI.0000000000000536
16. Gadermaier E., James L. K., Shamji M. H., Blatt K., Fauland K., Zieglmayer P. [et al.]. Epitope specificity determines cross-protection of a SIT-induced IgG4 antibody. Allergy, 2016, vol. 71, no. 1, pp. 36–46. https://doi.org/10.1111/all.12710
17. Tscheppe A., Breiteneder H. Recombinant allergens in structural biology, diagnosis, and immunotherapy. International Archives of Allergy and Immunology, 2017, vol. 172, no. 4, pp. 187–202. https://doi.org/10.1159/000464104
18. Bijli K. M., Singh B. P., Sridhara S., Arora N. Isolation of total RNA from pollens. Preparative Biochemistry and Biotechnology, 2001, vol. 31, no. 2, pp. 155–162. https://doi.org/10.1081/PB-100103381
19. Clos J., Brandau S. pJC20 and pJC40 − two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. Protein Expression and Purification, 1994, vol. 5, no. 2, pp. 133–137. https://doi. org/10.1006/prep.1994.1020
20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 1977, vol. 74, no. 12, pp. 5463–5467. https://doi.org/10.1073/ pnas.74.12.5463
21. Tripathi N. K., Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Frontiers in Bioengineering and Biotechnology, 2019, vol. 7, art. 420. https://doi.org/10.3389/ fbioe.2019.00420
22. Varma A., Padh H., Shrivastava N. Plant genomic DNA isolation: an art or a science. Biotechnology Journal, 2007, vol. 2, no. 3, pp. 386–392. https://doi.org/10.1002/biot.200600195
23. Ryabushkina N. A., Omasheva M. E., Galiakparov N. N. Specifics of DNA extraction from plant objects. Eurasian Journal of Applied Biotechnology, 2012, no. 2, pp. 9–26 (in Russian).
24. Parkhomchuk O. Yu., Zverko V. V., Grigor’eva E. E., Fomina E. G. Comparative analysis of two methods for RNA isolation from plant raw materials. Sovremennye problemy infektsionnoi patologii cheloveka: sbornik nauchnykh trudov. Vypusk 12 [Modern problems of infectious morbidity in humans: a collection of scientific papers. Iss. 12]. Minsk, 2019, pp. 237–238 (in Russian).
25. Brule C. E., Grayhack E. J. Synonymous codons: choose wisely for expression. Trends in Genetics, 2017, vol. 33, no. 4, pp. 283–297. https://doi.org/10.1016/j.tig.2017.02.001
26. MolBiol.ru. Available at: http://www.molbiol.ru/scripts/01_11.html (accessed 30.09.2022) (in Russian).
27. Codon Usage Database. Available at: http://www.kazusa.or.jp/codon/ (accessed 30.09.2022).