Haplotypic diversity of the mtCytb gene of the common vole (Microtus arvalis sensu lato) in Belarus
https://doi.org/10.29235/1029-8940-2023-68-1-64-74
Abstract
The analysis of the recent phylogeographic studies of Microtus arvalis is carried out to establish the post-glacial history of colonization of the common vole in the Central region of Europe. The authors have presented the original data on the genetic variability of the mtCytb gene of the common vole (Microtus arvalis s. l.) from 18 localities studied on the territory of Belarus. The genetic characteristics of 53 individuals of the common vole belonging to one eastern line of mitochondrial DNA were studied. It is shown that the population of the species in Belarus is characterized by a high level of genetic diversity comparable to that of other haplogroups of the eastern mtDNA line. The level of variability of mitochondrial fragments of the mtCytb gene of the common vole (Microtus arvalis) from Belarus turned outtobeq uite high (Hd ± SDHd = 0.97 ± 0.02), which is manifested in a large number of the identified mtDNA haplotypes (n = 41). The distribution of the identified haplotypes of Microtus arvalis across various landscape-geographical areas correlates well with the location of the most remote haplotypes on the parsimony network. The assumption is given about the re-settlement (about 9000 thousand years ago) and further settlement of Microtus arvalis on the modern territory of Belarus in two directions: from southeast to west and to northwest, as well as from north to southeast.
Keywords
About the Authors
E. I. MashkovBelarus
Evgeniy I. Mashkov ‒ Junior Researcher
27, Akademicheskaya Str., 220072, Minsk
H. S. Gajduchenko
Belarus
Helen S. Gajduchenko ‒ Ph. D. (Biol.), Leading Researcher
27, Akademicheskaya Str., 220072, Minsk
Yu. M. Borisov
Russian Federation
Yury M. Borisov ‒ D. Sc. (Biol.), Leading Researcher
27, Leninski Ave., 119071, Moscow
References
1. Clark P. U., Dyke A. S., Shakun J. D., Carlson A. E., Clark J., Wohlfarth B., Mitrovica J. X., Hostetler S. W., McCabe A. M. The last glacial maximum. Science, 2009, no. 5941, pp. 710–714. https://doi.org/doi/10.1126/science.1172873
2. Larsen E., Fredin O., Liså A., Amantov A., Fjeldskaar V., Ottesen D. Causes of time-transgressive glacial maxima positions of the last Scandinavian Ice Sheet. Norwegian Journal of Geology, 2016, vol. 96, no. 2, pp. 159–170. https://doi.org/10.17850/njg96-2-06
3. Taberlet P., Fumagalli L., Wust-Saucy A. G., Cosson J. F. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 1998, vol. 7, no. 4, pp. 453–464. https://doi.org/10.1046/j.1365-294x.1998.00289.x
4. Hewitt, G. M. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 1999, vol. 68, no. 1–2, pp. 87–112. https://doi.org/10.1006/bijl.1999.0332
5. Wysota W., Lankauf K. R., Szman’da J., Chrus’cin’ska A., Oczkowski H. L., Przegietka K. R. Chronology of the Vistulian (Weichselian) glacial events in the lower Vistula region, middle-north Poland. Geochronometria, 2002, vol. 21, pp. 137–141.
6. Wysota W., Molewski P., Sokołowski R. J. Record of the Vistula ice lobe advances in the Late Weichselian glacial sequence in north-central Poland. Quaternary International, 2009, vol. 207, no. 1–2, pp. 26–41. https://doi.org/10.1016/j.quaint.2008.12.015
7. Pazonyi, P. Mammalian ecosystem dynamics in the Carpathian Basin during the last 27000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, vol. 212, no. 3–4, pp. 295–314. https://doi.org/10.1016/j.palaeo.2004.06.008
8. Sommer R. S., Nadachowski A. Glacial refugia of mammals in Europe: evidence from fossil records. Mammal Review, 2006, vol. 36, no. 4, pp. 251–265. https://doi.org/10.1111/j.1365-2907.2006.00093.x
9. Wójcik J. M., Kawałko A., Marková S., Searle J. B., Kotlík P. Phylogeographic signatures of northward post-glacial colonization from high-latitude refugia: a case study of bank voles using museum specimens. Journal of Zoology, 2010, vol. 281, no. 4, pp. 249–262. https://doi.org/10.1111/j.1469-7998.2010.00699.x
10. Herman J. S., McDevitt A. D., Kawałko A., Jaarola M., Wójcik J. M., Searle J. B. Land-bridge calibration of molecular clocks and the post-glacial colonization of Scandinavia by the Eurasian field vole Microtus agrestis. PLoS ONE, 2014, vol. 9, no. 8, p. e103949. https://doi.org/10.1371/journal.pone.0103949
11. Stojak J., McDevitt A. D., Herman J. S., Searle J. B., Wójcik J. M. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biological Journal of the Linnean Society, 2015, vol. 115, no. 4, pp. 927–939. https://doi.org/10.1111/bij.12535
12. Tougard C., Renvoisé E., Petitjean A., Quéré J. P. New insight into the colonization processes of common voles: inferences from molecular and fossil evidence. PLoS ONE, 2008, vol. 3, no. 10, p. e3532. https://doi.org/10.1371/journal.pone.0003532
13. Bužan E. V., Förster D. W., Searle J. B., Kryštufek B. A new cytochrome b phylogroup of the common vole Microtus arvalis endemic to the Balkans and its implications for the evolutionary history of the species. Biological Journal of the Linnean Society, 2010, vol. 100, no. 4, pp. 788–796. https://doi.org/10.1111/j.1095-8312.2010.01451.x
14. Martínková N., Barnett R., Cucchi T., Struchen R., Pascal M., Pascal M. [et al.]. Divergent evolutionary processes associated with colonization of offshore islands. Molecular Ecology, 2013, vol. 22, no. 20, pp. 5205–5220. https://doi.org/10.1111/mec.12462
15. Haynes S., Jaarola M., Searle J.B. Phylogeography of the common vole Microtus arvalis with particular emphasis on the colonization of the Orkney archipelago. Molecular Ecology, 2003, vol. 12, no. 4, pp. 951–956. https://doi.org/10.1046/j.1365-294X.2003.01795.x
16. Stojak J., Wójcik J. M., Ruczyńska I., Searle J. B., McDevitt A. D. Contrasting and congruent patterns of genetic structuring in two Microtus vole species using museum specimens. Mammal Research, 2016, no. 61, pp. 141–152. https://doi.org/10.1007/s13364-015-0260-y
17. Heckel G., Burri R., Fink S., Desmet J.-F., Excoffier L. Genetic structure and colonization processes in European populations of the common vole Microtus arvalis. Evolution, 2005, vol. 59, no. 10, pp. 2231–2242. https://doi.org/10.1554/05-255.1
18. McDevitt A. D., Zub K., Kawałko A., Oliver M. K., Herman J. S., Wójcik J. M. Climate and refugial origin influence the mitochondrial lineage distribution of weasels Mustela nivalis in a phylogeographic suture zone. Biological Journal of the Linnean Society, 2012, vol. 106, no. 1, pp. 57–69. https://doi.org/10.1111/j.1095-8312.2012.01840.x
19. Sheftel’ B. I. Methods for estimating the abundence of small mammals. Russian Journal of Ecosystem Ecology, 2018, vol. 3, no. 3, pp. 1–21 (in Russian).
20. Baskevich M. I., Potapov S. G., Okulova N. M., Capel’nikov S. F., Vlasov A. A., Oparin M. L., Mironova T. A., Avilova E. A. To the distribution of variability of species-twins of Microtus arvalis s.l. (Rodentia, Arvicolinae) in the Central Chernozem region according to chromosomal and molecular genetic data. Zoologicheskii zhurnal [Zoological journal], 2009, vol. 88, no. 4, pp. 473–487 (in Russian).
21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, vol. 28, no. 10, pp. 2731–2739. https://doi.org/10.1093/molbev/msr121
22. Bandelt H. J., Forster P., Rohl A. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 1999, vol. 16, no. 1, pp. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
23. Baca M., Popović D., Baca K., Lemanik A., Doan K., Horáček I. [et al.]. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quaternary Science Reviews, 2020, vol. 233, art. 106239. https://doi.org/10.1016/j.quascirev.2020.106239
24. Baca M., Popović D., Lemanik A., Fewlass H., Talamo S., Zima J., Ridush B., Popov V., Nadachowski A. The Tien Shan vole (Microtus ilaeus; Rodentia: Cricetidae) as a new species in the Late Pleistocene of Europe. Ecology and Evolution, 2021, vol. 11, no. 22, pp. 16113–16125.https://doi.org/10.1002/ece3.8289
25. Barker R. J., Van Den Bussche R. A., Wright A. J., Wiggins L. E., Hamilton M. J., Reat E. P., Smith M. H., Lomakin M. D., Chesser R. K. High levels of genetic change in rodents of Chernobyl. Nature, 1996, vol. 380, pp. 707–708. https:// doi.org/10.1038/380707a0
26. Librado P., Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, vol. 25, no. 11, pp. 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
27. Markova A. K. The Mikulino (= Eemian) mammal faunas of the Russian Plain and Crimea. Netherlands Journal of Geosciences, 2000, vol. 79, no. 2–3, pp. 293–301. https://doi.org/10.1017/S0016774600021776
28. Leigh J. W., Bryant D. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 2015, vol. 6, no. 9, pp. 1110–1116. https://doi.org/10.1111/2041-210X.12410