Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Evaluation of the genetic stability of recombinant flu vectors encoding Mycobacterium bovis proteins using RT-PCR and optimization of their cultivation conditions

https://doi.org/10.29235/1029-8940-2023-68-1-38-46

Abstract

Prevention by immunizing cattle against tuberculosis with traditional vaccines and regular testing has long been the main method of controlling this infection. However, the non-specificity of the traditional method shows the need for alternative approaches in the creation of anti-infective vaccines. The development of recombinant vector vaccines based on influenza vectors shows great potential and advantages in providing a specific immune response.
The purpose of the study is to evaluate the growth properties of the recombinant influenza virus strains expressing protective proteins of mycobacteria for further use in creating a vector vaccine against bovine tuberculosis.
This article presents the results of work on the cultivation and reproduction of recombinant influenza virus strains. Using reverse genetics methods, recombinant strains of the influenza virus carrying the mycobacterial Mycobacterium bovis ESAT-6 and TB10.4 proteins in the NS gene sequence were constructed. Based on the results of the work carried out, the optimal conditions for cultivating recombinant influenza virus strains were determined. Both variants of the recombinant strain showed reproductive activity in the developing chick embryo system, under optimal cultivation conditions.
The evaluation of the genetic stability of the insertion of mycobacterial proteins into the NS gene of the influenza virus was confirmed using the RT-PCR method. As a result, it was found that the NS gene segment contains an insertion of mycobacterial proteins TB10.4 and ESAT-6, which is retained throughout the studied 5 passages.

About the Authors

Zh. S. Abay
Research Institute of Biological Safety Problems
Kazakhstan

Zhandos S. Abay – Master of Natural Sciences, Junior Researcher

15, Momyshuly Str., 080409, Guardeyskii



S. O. Sadikalieva
Research Institute of Biological Safety Problems
Kazakhstan

Sandugash О. Sadikalieva – Master of Natural Sciences, Senior Researcher

15, Momyshuly Str., 080409, Guardeyskii



K. A. Shorayeva
Research Institute of Biological Safety Problems
Kazakhstan

Kamshat A. Shorayeva – Ph. D. (Chem.), Head of the Laboratory

15, Momyshuly Str., 080409, Guardeyskii



B. A. Espembetov
Research Institute of Biological Safety Problems
Kazakhstan

Bolat A. Espembetov – Ph. D. (Veterinary), Professor, Head of the Laboratory

15, Momyshuly Str., 080409, Guardeyskii



A. S. Nurpeisova
Research Institute of Biological Safety Problems
Kazakhstan

Ainur S. Nurpeisova – Ph. D. (Veterinary), Leading Researcher

15, Momyshuly Str., 080409, Guardeyskii



References

1. Refaya A. K., Bhargavi G., Mathew N. Ch., Rajendran A., Krishnamoorthy R., Swaminathan S., Palaniyandi K. A review on bovine tuberculosis in India. Tuberculosis, 2020, vol. 122, art. 101923. https://doi.org/10.1016/j.tube.2020.101923

2. Barandiaran S., Martínez Vivot M., Pérez A. M., Cataldi A. A., Zumárraga M. J. Bovine tuberculosis in domestic pigs: Genotyping and distribution of isolates in Argentina. Research in Veterinary Science, 2015, vol. 103, pp. 44–50. https://doi.org/10.1016/j.rvsc.2015.09.013

3. Cardoso-Toset F., Luque I., Carrasco L., Jurado-Martos F., Risalde M. A., Venteo A. [et al.]. Evaluation of five serologic assays for bovine tuberculosis surveillance in domestic free-range pigs from southern Spain. Preventive Veterinary Medicine, 2017, vol. 1, no. 137, pt. A, pp. 101–104. https://doi.org/10.1016/j.prevetmed.2016.12.016

4. Good M., Duignan A. Perspectives on the History of Bovine TB and the Role of Tuberculin in Bovine TB. Veterinary Medicine International, 2011, vol. 2011, art. 410470. https://doi.org/10.4061/2011/410470

5. Müller B., Dürr S., Alonso S., Hattendorf J., Laisse C. J. M., Parsons S. D. C., van Helden P. D., Zinsstag J. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerging Infectious Diseases, 2013, vol. 19, no. 6, pp. 899–908. https://doi.org/10.3201/eid1906.120543

6. Cosivi O., Grange J. M., Daborn C. J., Raviglione M. C., Fujikura T., Cousins D. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerging Infectious Diseases, 1998, vol. 4, no. 1, pp. 59–70. https://doi.org/10.3201/eid0401.980108

7. Buddle B. M., Livingstone P. G., de Lisle G. W. Advances in ante-mortem diagnosis of tuberculosis in cattle. New Zealand Veterinary Journal, 2009, vol. 57, no. 4, pp. 173–180. https://doi.org/10.1080/00480169.2009.36899

8. Smolonogina T. A., Isakova-Sivak I. N., Kotomina T. S., Evsina A. S., Stepanova E. A., Prokopenko P. I., Leont’eva G. F., Suvorov A. N., Rudenko L. G. Design of a vector vaccine based on a cold-adapted influenza virus to protect against a bacterial infection caused by group B streptococci. Molekulyarnaya genetika, mikrobiologiya i virusologiya [Molecular Genetics, Microbiology and Virology], 2019, vol. 37, no. 1, pp. 25–34 (in Russian).

9. de Vries R. D., Rimmelzwaan G. F. Viral vector-based influenza vaccines. Human Vaccines & Immunotherapeutics, 2016, vol. 12, no. 11, pp. 2881–2901. https://doi.org/10.1080/21645515.2016.1210729

10. Tripp R. A., Tompkins S. M. Virus-vectored influenza virus vaccines. Viruses, 2014, vol. 6, no. 8, pp. 3055–3079. https://doi.org/10.3390/v6083055

11. Kittel C., Ferko B., Kurz M., Voglauer R., Sereinig S., Romanova J., Stiegler G., Katinger H., Egorov A. Generation of an Influenza A Virus Vector Expressing Biologically Active Human Interleukin-2 from the NS Gene Segment. Journal of Virology, 2005, vol. 79, no. 16, pp. 10672–10677. https://doi.org/10.1128/jvi.79.16.10672-10677.2005

12. Jin H., Lu B., Zhou H., Ma Ch., Zhao J., Yang Ch.-F., Kemble G., Greenberg H. Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60. Virology, 2003, vol. 306, no. 1, pp. 18–24. https://doi.org/10.1016/s0042-6822(02)00035-1

13. Ferko B., Stasakova J., Sereinig S., Romanova J., Katinger D., Niebler B., Katinger H., Egorov A. Hyperattenuated recombinant influenza A virus nonstructural-protein-encoding vectors induce human immunodeficiency virus type 1 Nefspecific systemic and mucosal immune responses in mice. Virology, 2001, vol. 75, no. 19, pp. 8899–8908. https://doi.org/101128/jvi.75.19.8899-8908.2001

14. Takasuka N., Enami M., Itamura S., Takemori T. Intranasal inoculation of a recombinant influenza virus containing exogenous nucleotides in the NS segment induces mucosal immune response against the exogenous gene product in mice. Vaccine, 2002, vol. 20, no. 11–12, pp. 1579–1585. https://doi.org/10.1016/s0264-410x(01)00491-1

15. Egorov A., Brandt S., Sereinig S., Romanova J., Ferko B., Katinger D., Grassauer A., Alexandrova G., Katinger H., Muster T. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. Journal of Virology, 1998, vol. 72, no. 8, pp. 6437–6441 https://doi.org/10.1128/JVI.72.8.6437-6441.1998

16. Li J., Hou G., Wang Y., Wang S., Peng C., Yu X., Jiang W. Influenza Viral Vectors Expressing Two Kinds of HA Proteins as Bivalent Vaccine Against Highly Pathogenic Avian Influenza Viruses of Clade 2.3.4.4 H5 and H7N9. Frontiers in Microbiology, 2018, vol. 9, art. 604. https://doi.org/10.3389/fmicb.2018.00604

17. Korol’ O. I. Tuberculosis in children and the possibilities of its prevention. Tuberkulez. Problemy diagnostiki, lecheniya i profilaktiki: trudy Vserossiiskoi nauchno-prakticheskoi konferentsii, 13–14 noyabrya 2003 goda [Tuberculosis. Problems of diagnostics, treatment and prevention: proceedings of the All-Russian scientific and practical conference, November 13–14, 2003]. Saint Petersburg, 2003, pp. 100–104 (in Russian).

18. Medunitsyn N. V., Pokrovskii V. I. Fundamentals of immunoprophylaxis and immunotherapy of infectious diseases. Study guide. Moscow, Geotar-Media Publ., 2005. 528 p. (in Russian).

19. Meikle V., Alito A., Llera A. S., Gioffré A., Peralta A., Buddle B. M., Cataldi A. Identification of Novel Mycobacterium bovis Antigens by Dissection of Crude Protein Fractions. Clinical and Vaccine Immunology, 2009, vol. 16, no. 9, pp. 1352– 1359. https://doi.org/10.1128/cvi.00211-09

20. Pollock J. M., Andersen P. The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis. Journal of Infectious Diseases, 1997, vol. 175, no. 5, pp. 1251–1254. https://doi.org/10.1086/593686

21. Chang-hong Sh., Wang X.-W., Zhang H., Zhang T.-F., Wang L-M., Xu Zh.-K. Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis. DNA and Cell Biology, 2008, vol. 27, no. 4, pp. 199–207. https://doi.org/10.1089/dna.2007.0648


Review

Views: 254


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)