Influence of chitosan-stabilized silver nanoparticles on the physiological and biochemical state of potato plants (Solanum tuberosum L.) in vitro culture
https://doi.org/10.29235/1029-8940-2023-68-1-15-26
Abstract
The article contains the results of study of the influence of added to culture medium silver-containing chitosan- based nanocomposites (Chitosan-Ag) at a dilution of 1:500 and 1:1000 (the mass ratio of the components is 50:1 for Chit- Ag 50:1 and 100:1 for Chit-Ag 100:1) on the development of potato microshoots and microclones with a formed root system. Potato microshoots cultivated for 4 weeks on nutrient medium modified with nanocomposites were characterized by slow development and the absence of rhizogenesis, which indicates the toxic effect of the studied nanocomposite concentrations. When replacing the standard nutrient medium with nanocomposites modified for a potato microclone with developed roots, the Chit-Ag 50:1 reduced the rate of growth and development of microclones compared to control and pure chitosan. The Chit- Ag 100:1 nanocomposite had no influence on the microclone growth compared to the control, but reduced the root biomass compared to chitosan. The preservation of photosynthetic pigments and proline concentrations with decreasing the hydrogen peroxide level indicates the absence of the toxic effect of silver-containing chitosan-based nanocomposites on the formed potato microclones. The chitosan concentration increase in the nanocomposite composition helps us to reduce the toxic effect due to the formation of a dense stabilizing shell that delays the silver ion generation.
Keywords
About the Authors
N. A. YalouskayaBelarus
Ninel A. Yalouskaya – Postgraduate student
27, Akademicheskaya Str., 220072, Minsk
J. N. Kalatskaja
Belarus
Joanna N. Kalatskaja – Ph. D. (Biol.), Associate Professor, Leading Researcher
27, Akademicheskaya Str., 220072, Minsk
N. A. Laman
Belarus
Nikolai A. Laman – Academician, D. Sc. (Biol.), Professor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk
K. S. Hileuskaya
Belarus
Kseniya S. Hileuskaya – Ph. D. (Chem.), Associate Professor, Leading Researcher
36, F. Skorina Str., 220141, Minsk
A. N. Kraskouski
Belarus
Aliaksandr N. Kraskouski – Ph. D. (Chem.), Senior Researcher
36, F. Skorina Str., 220141, Minsk
V. I. Kulikouskaya
Belarus
Viktoryia I. Kulikouskaya – Ph. D. (Chem.), Associate Professor, Head of the Laboratory
36, F. Skorina Str., 220141, Minsk
References
1. Kamskaya V. E. Chitosan: structure, properties and using. Nauchnoe obozrenie. Biologicheskie nauki [Scientific review. Biological sciences], 2016, no. 6, pp. 36–42 (in Russian).
2. Tyuterev S. L. Ecologically safe inducers of plant resistance to diseases and physiological stresses. Vestnik zashchity rastenii = Plant protection news, 2015, no. 1 (83), pp. 3–13 (in Russian).
3. Wei L., Mi Y., Zhang J., Li Q., Dong F., Guo Z. Evaluation of quaternary ammonium chitosan derivatives differing in the length of alkyl side-chain: Synthesis and antifungal activity. International Journal of Biological Macromolecules, 2019, vol. 129, pp. 1127–1132. https://doi.org/10.1016/j.ijbiomac.2018.09.099
4. Varlamov V. P., Il’ina A. V., Shagdarova B. C., Lun’kov A. P., Mysyakina I. S. Chitin/chitosan and its derivatives: fundamental and applied aspects. Uspekhi biologicheskoi khimii [Advances in biological chemistry], 2020, vol. 60, pp. 317–368 (in Russian).
5. Pavlova N. A. Biological efficiency of some disease resistance inductors in the system of rehabilitation and protection of potato against diseases in original seedage. Vestnik zashchity rastenii = Plant protection news, 2015, no. 3 (85), pp. 21–26 (in Russian).
6. Vasyukova N. I., Ozeretskovskaya O. L. Induced plant resistance and salicylic acid: a review. Prikladnaya biokhimiya i mikrobiologiya [Applied biochemistry and microbiology], 2007, vol. 43, no. 4, pp. 405–411 (in Russian).
7. Badanova E. G., Davletbaev I. M., Sirotkin A. S. Preparations based on chitosan for agriculture. Vestnik Tekhnologicheskogo universiteta [Bulletin of the Technological University], 2016, vol. 19, no. 16, pp. 89–95 (in Russian).
8. Nge K. L., Nwe N., Chandrkrachang S., Stevens W. F. Chitosan as a growth stimulator in orchid tissue culture. Plant Science, 2006, vol. 170, no. 6, pp. 1185–1190. https://doi.org/10.1016/j.plantsci.2006.02.006
9. Asghari-Zakaria R., Maleki-Zanjani B., Sedghi E. Effect of in vitro chitosan application on growth and minituber yield of Solanum tuberosum L. Plant Soil and Environment, 2009, vol. 55, no. 6, pp. 252–256. https://doi.org/10.17221/1018-pse
10. El Hadrami A., Adam L. R., El Hadrami I., Daayf F. Chitosan in plant protection. Marine Drugs, 2010, vol. 8, no. 4, pp. 968–987. https://doi.org/10.3390/md8040968
11. Chirkov S. N. The antiviral activity of chitosan. Applied Biochemistry and Microbiology, 2002, vol. 38, no. 1, pp. 1–8. https://doi.org/10.1023/A:1013206517442
12. Tripathi A., Liu S., Singh P. K., Kumar N., Pandey A. Ch., Tripathi D. K., Chauhan D. K., Sahi Sh. Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticles (AgNPs) in Cucumis sativus L. Plant Gene, 2017, vol. 11, pt. B, pp. 255–264. https://doi.org/10.1016/j.plgene.2017.07.005
13. Khan I., Raza M. A., Bin Khalid M. H., Awan S. A., Raja N. I., Zhang X., Min S., Wu B. Ch., Hassan M. J., Huang L. Physiological and biochemical responses of pearl millet (Pennisetum glaucum L.) seedlings exposed to silver nitrate (AgNO3) and silver nanoparticles (AgNPs). International Journal of Environmental Research and Public Health, 2019, vol. 16, no. 13, art. 2261. https://doi.org/10.3390/ijerph16132261
14. Siddiqui M. H., Al-Whaibi M. H., Firoz M., Al-Khaishany M. Y. Role of nanoparticles in plants. Nanotechnology in Plant Science. Cham, 2015, pp. 19–35.
15. Zherebin P. M., Ignatov A. N., Elanskii S. N., Pobedinskaya M. A., Lisichkin G. V., Denisov A. N., Krutyakov Yu. A. “Zeroks”-silver-based preparate for an effective control of bacterial and fungal epidemic diseases of agricultural plants. Zashchita kartofelya [Potato protection], 2014, no. 2, pp. 43–45 (in Russian).
16. Dykman L. A., Shchegolev S. Yu. Interactions of plants with noble metal nanoparticles (review). Sel’skokhozyaistvennaya biologiya [Agricultural biology], 2017, vol. 52, no. 1, pp. 13–24 (in Russian).
17. Murashige T., Skoog F.A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 1962, vol. 15, no. 3, pp. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
18. Shlyk A. A. Determination of chlorophylls and carotenoids in green leaf extracts. Biochemical methods in plant physiology: collection of articles. Moscow, 1971, pp. 154–170 (in Russian).
19. Bellincampi D., Dipierro N., Salvi G., Cervone F., De Lorenzo G. Extracellular H2O2 induced by Oligagalacturonides is not involved in the inhibition of the auxin-regulated roIB gene expression in tobacco leaf explants. Plant Physiology, 2000, vol. 122, no. 4, pp. 1379–1385. https://doi.org/10.1104/pp.122.4.1379
20. Bates L. S., Waldren R. P., Teare J. D. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973, vol. 39, no. 1, pp. 205–207. https://doi.org/10.1007/bf00018060
21. Makeeva I. Yu. Physiological and biochemical responses of Solanum tuberosum to the action of caffeic acid. Ph. D. diss. Orel, 2017. 122 p. (in Russian).
22. Elovskaya N. A., Kalatskaya Zh. N., Nedved’ E. L., Gilevskaya K. S. The influence of silver-containing chitosanbased nanoparticles on the development of potato microclones. Problemy otsenki, monitoringa i sokhraneniya bioraznoobraziya: sbornik materialov IV Respublikanskoi nauchno-prakticheskoi ekologicheskoi konferentsii (Brest, 25 noyabrya 2021) [Problems of assessment, monitoring and conservation of biodiversity: collection of materials of the IV Republican scientific and practical ecological conference (Brest, November 25, 2021)]. Brest, 2021, pp. 121–125 (in Russian).
23. Erastova M. A., Fedorova Yu. N. Study of rhizogenesis of potato mini-plants in vitro. Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Altai State Agricultural University], 2009, no. 5 (55), pp. 21–23 (in Russian).
24. Jiang H. Sh., Li M., Chang F. Y., Li W., Yin L. Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environmental Toxicology and Chemistry, 2012, vol. 31, no. 8, pp. 1880–1886. https://doi.org/10.1002/ etc.1899
25. Sosan A., Svistunenko D., Straltsova D., Tsiurkina K., Anderson D., Sokolik A., Colbeck I., Demidchik V. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant Journal, 2016, vol. 85, no. 2, pp. 245–257. https://doi.org/10.1111/tpj.13105
26. Stampoulis D., Sinha S. K., White J. C. Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 2009, vol. 43, no. 24, pp. 9473–9479. https://doi.org/10.1021/es901695c
27. Gudkova O. I., Bobkova N. V., Fel’dman N. B., Luferov A. N., Gromovykh T. I., Samylina I. A., Ananyan M. A., Lutsenko S. V. Study of the biological activity of arabinogalactan-stabilized silver nanoparticles towards watercress Lepidium sativum L. Curled and plant pathogenic micromycete Fusarium sambucinum. Sel’skokhozyaistvennaya biologiya [Agricultural biology], 2021, vol. 56, no. 3, pp. 500–510 (in Russian).
28. Bugara I. A., Zhaldak S. N., Truskavetskii R. V. Features of the influence of nanosilver compositions on the processes of morphogenesis in potato culture in vitro. Science Time, 2015, no. 11 (23), pp. 87–91 (in Russian).
29. Almutairi Z. M., Alharbi A. A. Effect of silver nanoparticles on seed germination of crop plants. Journal of Advances in Agriculture, 2015, vol. 4, no. 1, pp. 280–285. https://doi.org/10.24297/jaa.v4i1.4295