Toxicity of polyamidoamine dendrimers in vivo
https://doi.org/10.29235/1029-8940-2022-67-4-419-425
Abstract
The development of effective drug delivery systems is a crusial task for modern medicine. The main problem is the occurrence of non-specific toxicity leading to undesirable side effects in vivo.
This article aims at reviewing resent research on the toxicity of polyamidoamine (PAMAM) dendrimers in vivo. The research results show that the toxicity of PAMAM dendrimers and modified nanoparticles depends both on the characteristics of the particles themselves (size, generation and surface charge) and on the administration parameters. It has been shown that cationic PAMAM dendrimers of small and medium generations are non-toxic in vivo when administered intravenously and intraperitoneally to mice at doses up to 10 mg/kg. In turn, anionic, neutral, and modified PAMAM dendrimers do not exhibit toxicity, regardless of the route of administration. Thus, by varying methods of administration, the dose, and modifying the surface of dendrimers, the decrease in toxicity can be achieved, promising a path towards their successfully aplication as drug carriers.
About the Authors
A. I. StanavayaBelarus
Alesia I. Stanavaya – Researcher
27, Akademicheskaya Str., 220072, Minsk
V. M. Abashkin
Belarus
Viktar M. Abashkin – Researcher
27, Akademicheskaya Str., 220072, Minsk
A. V. Vcherashniaya
Belarus
Aliaksandra V. Vcherashniaya – Ph. D. (Biol.), Senior Researcher
27, Akademicheskaya Str., 220072, Minsk
M. M. Terehova
Belarus
Maria M. Terehova – Junior Researcher
27, Akademicheskaya Str., 220072, Minsk
V. A. Zhogla
Belarus
Victoriya A. Zhogla – Junior Researcher
27, Akademicheskaya Str., 220072, Minsk
I. V. Halets-Bui
Belarus
Inessa V. Halets-Bui – Ph. D. (Biol.), Senior Researcher
27, Akademicheskaya Str., 220072, Minsk
S. S. Zhyvitskaya
Belarus
Slaviana S. Zhyvitskaya – Studen
4, Nezavisimosti Ave., 220030, Minsk
D. G. Shcharbin
Belarus
Dzmitry G. Shcharbin – D. Sc. (Biol.), Associate Professor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk
References
1. Tomalia D. A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. A new class of polymers: Starburst-dendritic macromolecules. Polymer Journal, 1985, vol. 17, no. 1, pp. 117–132. https://doi.org/10.1295/ polymj.17.117
2. Roberts J. C., Bhalgat M. K., Zera R. T. Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. Journal of Biomedical Materials Research, 1996, vol. 30, no. 1, pp. 53–65. https://doi.org/10.1002/(SICI)1097- 4636(199601)30:13.0.CO;2-Q
3. Mamede M., Saga T., Ishimori T., Higashi T., Sato N., Kobayashi H., Brechbiel M. W., Konishi J. Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin-dendrimer complex. Journal of Controlled Release, 2004, vol. 95, no. 1, pp. 133–141. https://doi.org/10.1016/j.jconrel.2003.11.015
4. Malik N., Wiwattanapatapee R., Klopsch R., Lorenz K., Frey H., Weener J. W., Meijer E. W., Paulus W., Duncan R. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. Journal of Controlled Release, 2000, vol. 65, no. 1–2, pp. 133–148. https://doi.org/10.1016/S0168-3659(99)00246-1
5. Okuda T., Kawakami S., Maeie T., Niidome T., Yamashita F., Hashida M. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. Journal of Controlled Release, 2006, vol. 114, no. 1, pp. 69–77. https://doi.org/10.1016/j.jconrel.2006.05.009
6. Karolczak K., Rozalska S., Wieczorek M., Labieniec-Watala M., Watala C. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood-brain barrier permeability in streptozotocin diabetes in rats. International Journal of Pharmaceutics, 2012, vol. 436, no. 1–2, pp. 508–518. https://doi.org/10.1016/j. ijpharm.2012.06.033
7. Chauhan A. S., Diwan P. V., Jain N. K., Tomalia D. A. Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimers. Biomacromolecules, 2009, vol. 10, no. 5, pp. 1195–1202. doi:10.1021/bm9000298
8. Thiagarajan G., Sadekar S., Greish K., Ray A., Ghandehari H. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Molecular Pharmaceutics, 2013, vol. 10, no. 3, pp. 988–998. doi:10.1021/mp300436c
9. Kannan S., Dai H., Navath R. S., Balakrishnan B., Jyoti A., Janisse J., Romero R., Kannan R. M. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Science Translational Medicine, 2012, vol. 4, no. 130. https://doi.org/10.1126/scitranslmed.3003162
10. Kukowska-Latallo J. F., Raczka E., Quintana A., Chen C., Rymaszewski M., Baker J. R. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Human Gene Therapy, 2000, vol. 11, no. 10, pp. 1385–1395. https://doi.org/10.1089/10430340050057468
11. Navarro G., Maiwald G., Haase R., Rogach A. L., Wagner E., de Ilarduya C. T., Ogris M. Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. Journal of Controlled Release, 2010, vol. 146, no. 1, pp. 99–105. https://doi.org/10.1016/j.jconrel.2010.04.030
12. Maruyama-Tabata H., Harada Y., Matsumura T., Satoh E., Cui F., Iwai M., Kita M., Hibi S., Imanishi J., Sawada T., Mazda O. Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer. Gene Therapy, 2000, vol. 7, no. 1, pp. 53–60. https://doi.org/10.1038/sj.gt.3301044
13. Han L., Huang R., Li J., Liu S., Huang S., Jiang C. Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer. Biomaterials, 2011, vol. 32, no. 4, pp. 1242–1252. https://doi. org/10.1016/j.biomaterials.2010.09.070
14. Han L., Zhang A., Wang H., Pu P., Jiang X., Kang C., Chang J. Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Human Gene Therapy, 2010, vol. 21, no. 4, pp. 417–426. https://doi.org/10.1089/hum.2009.087
15. Mignani S., Rodrigues J., Roy R., Shi X., Cena V., El Kazzouli S., Majoral J.-P. Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discovery Today, 2019, vol. 24, pp. 1184–1192. https://doi.org/10.1016/j.drudis.2019.03.001
16. Jain K., Kesharwani P., Gupta U., Jain N.K. Dendrimer toxicity: Let’s meet the challenge. International Journal of Pharmaceutics, 2010, vol. 394, pp. 122–142. https://doi.org/10.1016/j.ijpharm.2010.04.027
17. Duncan R., Izzo L. Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 2005, vol. 57, pp. 2215–2237. https://doi.org/10.1016/j.addr.2005.09.019
18. Kharwade R., Badole P., Mahajan N., More S. Toxicity and surface modification of dendrimers: a critical review. Current Drug Delivery, 2022, vol. 19, pp. 451–465. https://doi.org/10.2174/1567201818666211021160441
19. Ziemba B., Janaszewska A., Ciepluch K., Krotewicz M., Fogel W. A., Appelhans D., Voit B., Bryszewska M., Klajnert B. In vivo toxicity of poly(propyleneimine) dendrimers. Journal of Biomedical Materials Research, 2011, vol. 99, pp. 261–268. https://doi.org/ 10.1002/jbm.a.33196
20. Mignani S., Shi X., Ceña V., Shcharbin D., Bryszewska M., Majoral J.-P. In vivo therapeutic applications of phosphorus dendrimers: State of the art. Drug Discovery Today, 2021, vol. 26, pp. 677–689. https://doi.org/10.1016/j.drudis. 2020.11.034