Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Structural and functional organisation of the phytopathogenic fungi Phoma sp.1 mitochondrial genome

https://doi.org/10.29235/1029-8940-2022-67-4-359-373

Abstract

The article presents the results of the mitochondrial DNA (30 837 n. r.) sequencing of the phytopathogenic fungi Phoma sp.1 – causative agent of Phoma blight of the pine and spruce plants cultivated in the forest nurseries. Annotation of the Phoma sp.1 mitochondrion showed 43 coding loci. Potential open reading frames (orf89, orf87, orf76 and orf108) and gene introns (cox3, nad1) are described. A comparative single genes analysis in the NCBI GenBank database showed, that Phoma sp.1 belongs to the Didymella spp., which can have Phoma anamorph. It has been shown that mitohondrial genes can be used as DNA markers for the diagnosis of Phoma and phoma-like fungi. Analysis of the mitochondrial synthenia of Phoma sp.1 and a related species (including phoma-like fungi), revealed significant structural rearrangements in mtDNA during phylogenesis.

About the Authors

S. V. Panteleev
Forest Research Institute of the National Academy of Sciences of Belarus
Belarus

Stanislav V. Panteleev – Ph. D. (Biol.), Leading Researcher

71, Proletarskaya Str., 246050, Gome



L. V. Mozharovskaya
Forest Research Institute of the National Academy of Sciences of Belarus
Belarus

Ludmila V. Mozharovskaya – Researcher

71, Proletarskaya Str., 246050, Gomel



P. S. Kiryanov
Forest Research Institute of the National Academy of Sciences of Belarus
Belarus

Pavel S. Kiryanov – Junior Researcher

71, Proletarskaya Str., 246050, Gomel



D. I. Kagan
Forest Research Institute of the National Academy of Sciences of Belarus
Belarus

Dmitri I. Kagan – Ph. D. (Biol.), Head of the Laboratory

71, Proletarskaya Str., 246050, Gomel, Republic of Belarus



O. Yu. Baranov
Forest Research Institute of the National Academy of Sciences of Belarus
Belarus

Oleg Yu. Baranov – Corresponding Member, D. Sc. (Biol.), Associate Professor, Head of the Laboratory

71, Proletarskaya Str., 246050, Gomel



References

1. Phoma identification manual. Differentiation of specific and infra-specific taxa in culture / G. H. Boerema [et al.]. – Wallingford : CABI, 2004. – 470 p.

2. Chemical characterization of Phoma pomorum isolated from Danish maize / J. L. Sørensen [et al.] // Int. J. Food Microbiol. – 2010. – Vol. 136, N 3. – P. 310–317. https://doi.org/10.1016/j.ijfoodmicro.2009.11.001

3. Yarmalovich, V. A. Phoma blight of planting stock of Pinus sylvestris L. and Picea abies L. in forest nurseries of Belarus / V. A. Yarmalovich, M. O. Siaredzich // Bull. Transilv. Univ. Brasov. – 2019. – Vol. 12, N 2. – P. 27–36. https://doi. org/10.31926/but.fwiafe.2019.12.61.2.2

4. Deb, D. Phoma diseases: epidemiology and control / D. Deb, A. Khan, N. Dey // Plant Pathol. – 2020. – Vol. 69, N 7. – P. 1203–1217. https://doi.org/10.1111/ppa.13221

5. Bennett, A. Phoma infections: classification, potential food sources, and its clinical impact / A. Bennett, M. M. Ponder, J. Garcia-Diaz // Microorganisms. – 2018. – Vol. 6, N 3. – P. 1–12. https://doi.org/10.3390/microorganisms6030058

6. Survey of bovine mycotic mastitis in dairy herds in the State of Sao Paulo, Brazil / E. O. Costa [et al.] // Mycopathologia. – 1993. – Vol. 124. – P. 13–17. https://doi.org/10.1007/BF01103051

7. Outbreaks of phaeohyphomycosis in the chinook salmon (Oncorhynchus tshawyscha) caused by Phoma herbarum / M. Faisal [et al.] // Mycopathologia. – 2007. – Vol. 163, N 1. – P. 41–48. https://doi.org/10.1007/s11046-006-0084-z

8. Sullivan, R. F. Phoma glomerata as a mycoparasite of powdery mildew / R. F. Sullivan, J. F. White Jr. // Appl. Environ. Microbiol. – 2000. – Vol. 66, N 1. – P. 425–427. https://doi.org/10.1128/AEM.66.1.425-427.2000

9. The lichenicolous Phoma species (Coelomycetes) on Cladonia / P. Diederich [et al.] // Lichenologist. – 2007. – Vol. 39, N 2. – P. 153–163. https://doi.org/10.1017/s0024282907006044

10. Gruyter, J. Revised taxonomy of Phoma and allied genera : Ph. D. Thesis / J. Gruyter ; Wageningen Univ. – 2012. – 180 p.

11. A new species and its phylogenetic placement in the Didymella/Phoma complex (Phaeosphaeriaceae, Pleosporales) / M. S. Torres [et al.] // Mycotaxon. – 2005. – Vol. 93. – P. 297–308.

12. Redisposition of phoma-like anamorphs in Pleosporales / J. Gruyter [et al.] // Stud. Mycol. – 2013. – Vol. 75, N 1. – P. 1–36. https://doi.org/10.3114/sim0004

13. The phoma-like dilemma / L. W. Hou [et al.] // Stud. Mycol. – 2020. – Vol. 96. – P. 309–396. https://doi.org/10.1016/j. simyco.2020.05.001

14. Boerema, G. H. Contributions towards a monograph of Phoma (Coelomycetes) – V. Subdivision of the genus in sections / G. H. Boerema // Mycotaxon. – 1997. – Vol. 64. – P. 321–333.

15. Highlights of the Didymellaceae: a polyphasic approach to characterize Phoma and related pleosporalean genera / M. M. Aveskamp [et al.] // Stud. Mycol. – 2010. – Vol. 65. – P. 1–60. https://doi.org/10.3114/sim.2010.65.01

16. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties / M. M. Aveskamp [et al.] // Mycologia. – 2009. – Vol. 101. – P. 363–382. https://doi.org/10.3852/08-199

17. NCBI Genome search [Electronic resourсe]. – Mode of access: https://www.ncbi.nlm.nih.gov/genome/?term=Phoma. – Date of access: 04.05.2022.

18. Zhang, X. Draft genome sequence of Phoma arachidicola Wb2 causing peanut web blotch in China / X. Zhang // Curr. Microbiol. – 2019. – Vol. 76, N 2. – P. 200–206. https://doi.org/10.1007/s00284-018-1612-z

19. Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723 / S. Sinha [et al.] // BMC Genomics. – 2019. – Vol. 20, N 1. – Art. 374. https://doi.org/10.1186/s12864- 019-5762-6

20. Padutov V. E., Baranov O. Yu., Voropaev E. V. Methods of molecular genetic analysis. Minsk, Ynipol Publ., 2007. 176 p. (in Russian).

21. Lang, B. F. Mitochondrial genome evolution and the origin of eukaryotes / B. F. Lang, M. W. Gray, G. Burger // Annu. Rev. Genet. – 1999. – Vol. 33. – P. 351–397. https://doi.org/10.1146/annurev.genet.33.1.351

22. The mitochondrial genome of a plant fungal pathogen Pseudocercospora fijiensis (Mycosphaerellaceae), comparative analysis and diversification times of the Sigatoka disease complex using fossil calibrated phylogenies / J. E. Arcila-Galvis [et al.] // Life. – 2021. – Vol. 11, N 3. – Art. 215. https://doi.org/10.3390/life11030215

23. Mullineux, S. T. Evolutionary dynamics of the mS952 intron: a novel mitochondrial group II intron encoding a LAGLIDADG homing endonuclease gene / S. T. Mullineux, K. Willows, G. Hausner // J. Mol. Evol. – 2011. – Vol. 72, N 5–6. – P. 433–449. https://doi.org/10.1007/s00239-011-9442-7

24. Megarioti, A. H. The coevolution of fungal mitochondrial introns and their homing endonucleases (GIY-YIG and LAGLIDADG) / A. H. Megarioti, V. N. Kouvelis // Genome Biol. Evol. – 2020. – Vol. 12, N 8. – P. 1337–1354. https://doi.org/ 10.1093/gbe/evaa126


Review

Views: 367


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)