Studying synergy of antibacterial drugs using the “checkerboard” method and the “time-kill” analysis
https://doi.org/10.29235/1029-8940-2022-67-3-332-342
Abstract
The use of combinations of antibiotics is a promising area of antibiotic therapy of bacterial infections caused by antibiotic-resistant strains. The main goal of combined antibiotic therapy is to achieve a synergistic effect and to expand a spectrum of antibacterial activity against multi-resistant microorganisms. Due to the presence of various mechanisms of resistance in bacteria, even to drugs of the same group, the microbiological efficacy of antibiotic combinations is difficult to predict. Therefore, to select effective combinations of antibiotics, it is required to conduct a microbiological testing of isolates isolated from a particular patient.
Currently, in the Republic of Belarus, the appointment of combined antibiotic therapy is carried out empirically, and in the event of its clinical ineffectiveness, the drugs are replaced. One of the reasons for a limited testing, with the availability of culture media and diagnostic materials, is the lack of regulatory and technical methods for identifying synergy adapted to local microbiological laboratories.
The purpose of this publication was to analyze the literature data illustrating the relevance of analyzing the methods for studying the effects of synergy of antibacterial drugs and the possibility of their introduction into practical medicine.
As a result of a search for publications in the PubMed database on the topic of increasing the antibacterial effect of antibiotics on the request the “checkerboard” method and the “time-kill” analysis for the period from 2016 to 2021, 947 results were found with an upward trend in research.
“Checkerboard” and “time-kill” assays are the most common, reliable in vitro tests that reflect the effects of antibiotic combinations and the effects of antibiotic combinations with other compounds.
About the Author
T. V. ArtyukhBelarus
Tatiana V. Artyukh ‒ Master of Medical Sciences, Assistant
80, Gorky Str., 230009, Grodno
References
1. Eliopoulos G. M., Eliopoulos C. T. Antibiotic combinations: should they be tested? Clinical Microbiology Reviews, 1988, vol. 1, no. 2, pp. 139‒156. https://doi.org/10.1128/CMR.1.2.139
2. Tapalski D. V., Timoshkova E. V., Petrovskaya T. A., Osipkina O. V., Karpov I. A. Microbiological efficiency of the combinations of two carbapenems against antibiotic resistant Klebsiella pneumoniae strains. Russian Clinical Laboratory Diagnostics, 2021, vol. 23, no. 5, pp. 304–309. https://doi:10.51620/0869-2084-2021-66-5-304-309
3. Nelson R. E., Hatfield K. M., Wolford H., Samore M. H., Scott R. D., Reddy S. C., Olubajo B., Paul P., Jernigan J. A., Baggs J. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clinical Infectious Diseases, 2021, vol. 29, no. 72, pp. 17–26. https://doi.10.1093/cid/ciaa1581
4. Zhu M., Tse M. W., Weller J., Chen J., Blainey P. C. The future of antibiotics begins with discovering new combinations. Annals of the New York Academy of Sciences, 2021, vol. 1496, no. 1, pp. 82–96. https://doi.10.1111/nyas.14649
5. Ma J., Motsinger-Reif A. Current methods for quantifying drug synergism. Protein Bioinformatics, 2019, vol. 1, no. 2, pp. 43–48.
6. Vagner Kh., Ul’rikh-Mertsenikh G. Synergy research: creating a new generation of herbal medicines. Russkii meditsinskii zhurnal. Meditsinskoe obozrenie [Russian medical journal. Medical review], 2016, vol. 24, no. 3, pp. 183–189 (in Russian).
7. Frejre F. D., Kamara M. B., Dantas M. G., Soares Aragao S. F., de Lima i Moura T. F. A., Rafin F. N. Gastric-resistant isoniazid pellets reduced degradation of rifampicin in acidic medium. Brazilian Journal of Pharmaceutical Sciences, 2014, vol. 50, no. 4, pp. 749–755. https://doi.org/10.1590/S1984-82502014000400010
8. Korol’ L. A., Skatkov S. A. Iberogast ‒ effective herbal medicine for functional diseases of the gastrointestinal tract. Terapiya [Therapy], 2016, no. 5, pp. 88–95 (in Russian).
9. Karakan T., Ozkul C., Küpeli Akkol E., Bilici S., Sobarzo-Sánchez E., Capasso R. Gut-brain-microbiota axis: antibiotics and functional gastrointestinal disorders. Nutrients, 2021, vol. 13, no. 2, art. 389. https://doi.10.3390/nu13020389
10. Peng M., Han R., Guo Y., Zheng Y., Yang F., Xu X., Hu F. In vitro combined inhibitory activities of β-lactam antibiotics and clavulanic acid against blaKPC-2-positive Klebsiella pneumoniae. Infection and Drug Resistance, 2021, vol. 2, no. 14, pp. 361–368. https://doi.org/10.2147/IDR.S292612
11. Tapal’skii D. V., Petrenev D. R., Khramchenkova O. M., Doroshkevich A. S. Antimicrobial and antifungal activity of lichen extracts common in Belarus. Zhurnal mikrobiologii, epidemiologii i immunobiologii [Journal of microbiology, epidemiology and immunobiology], 2017, no. 2, pp. 60–65 (in Russian).
12. Kononova L. I., P’yankov I. A., Smolyak A. A., Shklyaev Yu. V., Korobov V. P. Synergistic effect of the cationic peptide hominin and a new disinfectant based on isoquinoline on formation of biofilms in multidrug-resistant Staphylococci. Antibiotiki i khimioterapiya [Antibiotics and сhemotherapy], 2020, vol. 65, no. 6, pp. 11–18 (in Russian).
13. Odds F. C. Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy, 2003, vol. 52, no. 1. https://doi.org/10.1093/jac/dkg301
14. Tapal’skii D. V., Lagun L. V. Methods for determining sensitivity to a combination of antibiotics, gram-negative bacteria with hypersensitivity and complete antibiotic resistance: indications for use. Gomel, Gomel State Medical University, 2017. 27 p. (in Russian).
15. Aaron S., Ferris W., Henry D., Speert D., Macdonald N. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. American Journal of Respiratory and Critical Care Medicine, 2000, vol. 161, no. 4, pp. 1206–1212. https://doi.org/10.1164/ajrccm.161.4.9907147
16. Lang B., Aaron S., Ferris W., Hebert P., MacDonald N. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with multiresistant strains of Pseudomonas aeruginosa. American Journal of Respiratory and Critical Care Medicine, 2000, vol. 162, no. 6. pp. 2241–2245. https://doi.org/10.1164/ajrccm.162.6.2005018
17. Okoliegbe I. N., Hijazi K., Cooper K., Ironside C., Gould I. M. Antimicrobial synergy testing: comparing the tobramycin and ceftazidime gradient diffusion methodology used in assessing synergy in cystic fibrosis-derived multidrug-resistant Pseudomonas aeruginosa. Antibiotics (Basel), 2021, vol. 10, no. 8, art. 967. https://doi.org/10.3390/antibiotics10080967
18. Fatsis-Kavalopoulos N., Roemhild R., Tang P-C., Kreuger J., Andersson D. I. CombiANT: Antibiotic interaction testing made easy. PLoS Biology, 2020, vol. 18, no. 9, p. e3000856. https://doi.org/10.1371/journal.pbio.3000856
19. Kloezen W., Melchers R. J., Georgiou P.-C., Mouton J. W., Meletiadis J. Activity of cefepime in combination with the novel β-lactamase inhibitor taniborbactam (VNRX-5133) against extended-spectrum-β-lactamase-producing isolates in in vitro checkerboard assays. Antimicrobial Agents and Chemotherapy, 2021, vol. 65, no. 4, p. e02338-20. https://doi.org/10.1128/AAC.02338-20
20. Tapal’skii D. V. Susceptibility to combinations of antibiotics of carbapenemase-producing nosocomial strains of gram-negative bacteria isolated in Belarus. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya [Clinical microbiology and antimicrobial chemotherapy], 2018, vol. 20, no. 3, pp. 182–191 (in Russian).
21. Artyukh T. V., Sokolova T. N., Ostrovskaya O. B. Features of the resistance of clinical isolates of E. coli and C. albicans forming a biofilm. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta [Bulletin of Vitebsk State Medical University], 2021, vol. 20, no. 1, pp. 46–54 (in Russian).
22. Adamovich T. G., Gavrilova I. A., Kiril’chik E. Yu. Methods for studying the antimicrobial activity of antibiotics and antiseptics in vitro. Sovremennye tekhnologii v meditsinskom obrazovanii: materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 100-letiyu Belorusskogo gosudarstvennogo meditsinskogo universiteta (Minsk, 01–05 noyabrya 2021 goda) [Modern technologies in medical education: materials of the international scientific and practical conference dedicated to the 100th anniversary of the Belarusian State Medical University (Minsk, November 01–05, 2021)]. Minsk, 2021, pp. 1540–1543 (in Russian).
23. Foerster S., Unemo M., Hathaway L. J., Low N., Althaus C. L. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiology, 2016, vol. 16, art. 216. https://doi.org/10.1186/s12866-016-0838-9
24. Filimonova A. V., Golikova M. V., Strukova E. N., Portnoy Y. A., Kuznetsova A. A., Zinner S. H. Predicting the effects of carbapenem/carbapenemase inhibitor combinations against KPC-producing Klebsiella pneumoniae in time-kill experiments: alternative versus traditional approaches to MIC determination. Antibiotics (Basel), 2021, vol. 10, no. 12, art. 1520. https://doi.org/10.3390/antibiotics10121520
25. Chan E. L., Zabransky R. J. Determination of synergy by two methods with eight antimicrobial combinations against tobramycin-susceptible and tobramycin-resistant strains of Pseudomonas. Microbial Drug Resistance, 1987, vol. 6, no. 2, pp. 157–164. https://doi.org/10.1016/0732-8893(87)90101-5
26. Antimicrobial resistance surveillance in Central Asia and Europe, Annual report of the WHO Regional Office for Europe (2019). Available at: https://www.euro.who.int/__data/assets/pdf_file/0011/473267/CAESAR-annual-report-2019-rus. pdf (accessed 12.11.2021).
27. Lansbury L., Lim B., Baskaran V., Lim W. S. Co-infections in people with COVID-19: a systematic review and metaanalysis. Journal of Infection, 2020, vol. 81, no. 2, pp. 266–275. https://doi.org/10.1016/j.jinf.2020.05
28. Sinopal’nikov A. I. COVID19 pandemic is a «pandemic» of antimicrobial therapy. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya [Clinical Microbiology and Antimicrobial Chemotherapy], 2021, vol. 23, no. 1, pp. 5–15 (in Russian).
29. Tapal’skii D. V., Karpova E. V., Akulenok O. M., Okulich V. K., Generalov I. I., Leskova N. Yu. [et al.]. Antibiotic resistance of Klebsiella pneumoniae against the backdrop of the COVID-19 pandemic: experience of a multidisciplinary hospital. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious diseases: news, opinion, education], 2021, vol. 10, no. 3, pp. 15–22 (in Russian).
30. Effah C. Y., Drokow E. K., Agboyibor C., Liu S., Nuamah E., Sun T. [et al.]. Evaluation of the therapeutic outcomes of antibiotic regimen against carbapenemase-producing Klebsiella pneumoniae: a systematic review and meta-analysis. Frontiers in Pharmacology, 2021, vol. 12, art. 597907. https://doi.org/10.3389/fphar.2021.597907