Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Transcription factors – key regulatory biomolecules determining the differentiation of mesenchimal stem cells into the somatic cells of organs and tissues

https://doi.org/10.29235/1029-8940-2022-67-3-309-320

Abstract

Тhe mechanisms of differentiation of mesenchimal stem cells into the somatic cells of organs and tissues underlying embryogenesis and natural reparation processes and providing the structural and functional homeostasis of cells are considered. The data on adipogenic, osteogenic, chondrogenic, miogenic, and endothelial differentiations are given, which results in the formation of the cells of mesodermal origin in organism. The problem is discussed, how the transcription factors control each type of differentiation and participatе in them using various regulatory biomolecules, transcription factors, cytokines, and chimokins being in complicate permanent interactions and forming the integrity regulatory network. The participation in differentiation processes of a number of transcription factors (Runx2, Sox9, PPARγ, MyoD, GATA4 и GATA6) is discussed, the expression of which is under a permanent chemical control within the cellular regulatory network.

About the Authors

I. D. Volotovski
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Igor D. Volotovski ‒ Academician, D. Sc. (Biol.), Professor, Сhief Researcher

27, Akademicheskaya Str., 220072, Minsk



S. V. Pinchuk
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Sergei V. Pinchuk ‒ Ph. D. (Biol.), Leading Researche

27, Akademicheskaya Str., 220072, Minsk



I. B. Vasilevich
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Irina B. Vasilevich ‒ Researcher

27, Akademicheskaya Str., 220072, Minsk

 



References

1. Friedenstein A. J., Ivanov-Smolenski A. A., Chajlakjan A. R., Gorskaya U. F., Kuralesova A. I., Latzinik N. W., Gerasimov U.W. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Experimental Hematology, 1978, vol. 6, no. 5, pp. 440–444.

2. Caplan A. I., Bruder S. P. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine, 2001, vol. 7, no. 6, pp. 259–264. https://doi.org/10.1016/S1471-4914(01)02016-0

3. Herzog E. L., Chai L., Krause D. S. Plasticity of marrow-derived stem cells. Blood, 2003, vol. 102, no. 10, pp. 3483–3493. https://doi.org/10.1182/blood-2003-05-1664

4. Prockop D. J. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Molecular Therapy, 2009, vol. 17, no. 6, pp. 939–946. https://doi.org/10.1038/mt.2009.62

5. Chen S.-L., Fang W.-W., Ye F., Liu Y.-H., Qian J., Shan S.-J. [et al.]. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 2004, vol. 94, no. 1, pp. 92–95. https://doi.org/10.1016/j.amjcard.2004.03.034

6. Le Blanc K., Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 2005, vol. 11, no. 5, pp. 321–334. https://doi.org/10.1016/j.bbmt.2005.01.005

7. Crisan M., Yap S., Casteilla L., Chen C. W., Corselli M., Park T. S. [et al.]. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 2008, vol. 3, no. 3, pp. 301–313. https://doi.org/10.1016/j.stem.2008.07.003

8. Almalki S. G., Agrawal D. K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation, 2016, vol. 92, no. 1–2, pp. 41–51. https://doi.org/10.1016/j.diff.2016.02.005

9. Friedenstein A. J., Chailakhyan R. K., Gerasimov U. V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell and Tissue Kinetics, 1987, vol. 20, no. 3, pp. 263–272. https://doi.org/10.1111/j.1365-2184.1987.tb01309.x

10. Augello A., de Bari C. The regulation of differentiation in mesenchymal stem cells. Human Gene Therapy, 2010, vol. 21, no. 10, pp. 1226–1238. https://doi.org/10.1089/hum.2010.173

11. Okamoto T., Aoyama T., Nakayama T., Nakamata T., Hosaka T., Nishijo K., Nakamura T., Kiyono T., Toguchida J. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2002, vol. 295, no. 2, pp. 354–361. https://doi.org/10.1016/S0006-291X(02)00661-7

12. Wang Z. H., Li X. L., He X. J., Wu B. J., Xu M., Chang H. M. [et al.]. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model. Brazilian Journal of Medical and Biological Research, 2014, vol. 47, no. 4, pp. 279–286. https://doi.org/10.1590/1414-431X20133539

13. Park J. S., Yang H. N., Woo D. G., Jeon S. Y., Do H. J., Lim H. Y., Kim J. H., Park K. H. Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials, 2011, vol. 32, no. 14, pp. 3679–3688. https://doi.org/10.1016/j.biomaterials.2011.01.063

14. Seifert A., Werheid D. F., Knapp S. M., Tobiasch E. Role of Hox genes in stem cell differentiation. World Journal of Stem Cells, 2015, vol. 7, no. 3, pp. 583–595. https://doi.org/10.4252/wjsc.v7.i3.583

15. Karystinou A., Roelofs A. J., Neve A., Cantatore F. P, Wackerhage H., de Bari C. Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells. Arthritis Research and Therapy, 2015, vol. 17, no. 1, p. 147. https://doi.org/10.1186/s13075-015-0639-9

16. Kondo M., Yamaoka K., Sakata K., Sonomoto K., Lin L., Nakano K., Tanaka Y. Contribution of the interleukin-6/ STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells. Arthritis and Rheumatology, 2015, vol. 67, no. 5, pp. 1250–1260. https://doi.org/10.1002/art.39036

17. Zhang H. H., Huang J., Duvel K., Boback B., Wu S., Squillace R. M., Wu C. L., Manning B. D. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS ONE, 2009, vol. 4, no. 7, p. e6189. https://doi.org/10.1371/journal.pone.0006189

18. Zhuang H., Zhang X., Zhu C., Tang X., Yu F., Shang G. W., Cai X. Molecular mechanisms of PPAR-gamma governing MSC osteogenic and adipogenic differentiation. Current Stem Cell Research and Therapy, 2015, vol. 11, no. 3, pp. 255–264. https://doi.org/10.2174/1574888x10666150531173309

19. Okitsu Y., Takahashi S., Minegishi N., Kameoka J., Kaku M., Yamamoto M., Sasaki T., Harigae H. Regulation of adipocyte differentiation of bone marrow stromal cells by transcription factor GATA-2. Biochemical and Biophysical Research Communications, 2007, vol. 364, no. 2, pp. 383–387. https://doi.org/10.1016/j.bbrc.2007.10.031

20. Isenmann S., Arthur A., Zannettino A. C., Turner J. L., Shi S., Glackin C. A., Gronthos S. TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells, 2009, vol. 27, no. 10, pp. 2457–2468. https://doi.org/10.1002/stem.181

21. Jeong B. C., Kang I. H., Hwang Y. C., Kim S. H., Koh J. T. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death and Disease, 2014, vol. 5, no. 11, p. e1532. https://doi.org/10.1038/cddis.2014.485

22. Jackson L., Jones D. R., Scotting P., Sottile V. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. Journal of Postgraduate Medicine, 2007, vol. 53, no. 2, pp. 121–127. https://doi.org/10.4103/00223859.32215

23. Charytonowicz E., Matushansky I., Castillo-Martin M., Hricik T., Cordon-Cardo C., Ziman M. Alternate PAX3 and PAX7 C-terminal isoforms in myogenic differentiation and sarcomagenesis. Clinical and Translational Oncology, 2011, vol. 13, no. 3, pp. 194–203. https://doi.org.10.1007/s12094-011-0640-y

24. Gang E. J., Bosnakovski D., Simsek T., To K., Perlingeiro R. C. Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Experimental Cell Research, 2008, vol. 314, no. 8, pp. 1721–1733. https://doi.org/10.1016/j.yexcr.2008.02.016

25. Koutalianos D., Koutsoulidou A., Mastroyiannopoulos N. P., Furling D., Phylactou L. A. MyoD transcription factor induces myogenesis by inhibiting Twist-1 through miR-206. Journal of Cell Science, 2015, vol. 128, no. 19, pp. 3631–3645. https://doi.org/10.1242/jcs.172288

26. Jeong H., Bae S., An S. Y., Byun M. R., Hwang J. H., Yaffe M. B., Hong J. H., Hwang E. S. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB Journal, 2010, vol. 24, no. 9, pp. 3310–3320. https://doi.org/10.1096/fj.09-151324

27. Zhao Q., Yang S. T., Wang J. J., Zhou J., Xing S. S., Shen C. C. [et al.]. TNF alpha inhibits myogenic differentiation of C2C12 cells through NF-kappaB activation and impairment of IGF-1 signaling pathway. Biochemical and Biophysical Research Communications, 2015, vol. 458, no. 4, pp. 790–795. https://doi.org/10.1016/j.bbrc.2015.02.026

28. Hatzistergos K. E., Quevedo H., Oskouei B. N., Hu Q., Feigenbaum G. S., Margitich I. S. [et al.]. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 2010, vol. 107, no. 7, pp. 913–922. https://doi.org/10.1161/CIRCRESAHA.110.222703

29. Suresh S. C., Selvaraju V., Thirunavukkarasu M., Goldman J. W., Husain A., Palesty J. A., Sanchez J. A., McFadden D. W., Maulik N. Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. International Journal of Cardiology, 2015, vol. 201, pp. 517–528. https://doi.org/10.1016/j.ijcard.2015.08.117

30. Ding R., Jiang X., Ha Y., Wang Z., Guo J., Jiang H., Zheng S., Shen Z., Jie W. Activation of Notch1 signalling promotes multi-lineage differentiation of c-Kit(POS)/NKX2.5(POS) bone marrow stem cells: implication in stem cell translational medicine. Stem Cell Research & Therapy, 2015, vol. 6, no. 1, p. 91. https://doi.org/10.1186/s13287015-0085-2

31. Chamberlain G., Fox J., Ashton B., Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007, vol. 25, no. 11, pp. 2739–2749. https://doi.org/10.1634/stemcells.2007-0197

32. Donati C., Marseglia G., Magi A., Serrati S., Cencetti F., Bernacchioni C. [et al.]. Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for GATA6. PLoS ONE, 2011, vol. 6, no. 5, p. e20389. https://doi.org/10.1371/journal.pone.0020389

33. Jia S., Liu X., Li W., Xie J., Yang L., Li L. Peroxisome proliferator-activated receptor gamma negatively regulates the differentiation of bone marrow-derived mesenchymal stem cells toward myofibroblasts in liver fibrogenesis. Cellular Physiology and Biochemistry, 2015, vol. 37, no. 6, pp. 2085–2100. https://doi.org/10.1159/000438567

34. Seeger T., Hart M., Patarroyo M., Rolauffs B., Aicher W. K., Klein G. Mesenchymal stromal cells for sphincter regeneration: role of laminin isoforms upon myogenic differentiation. PLoS ONE, 2015, vol. 10, no. 9, p. e0137419. https://doi.org/10.1371/journal.pone.0137419

35. Shi N., Chen S. Y. From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. Journal of BioMed Research, 2015, vol. 29, no. 4, pp. 261–263. https://doi.org/10.7555/JBR.29.20150027

36. Pankajakshan D., Kansal V., Agrawal D. K. In vitro differentiation of bone marrow derived porcine mesenchymal stem cells to endothelial cells. Journal of Tissue Engineering and Regenerative Medicine, 2013, vol. 7, no. 11, pp. 911–920. https://doi.org/10.1002/term.1483

37. Ikhapoh I. A., Pelham C. J., Agrawal D. K. Synergistic effect of angiotensin II on vascular endothelial growth factorA-mediated differentiation of bone marrow-derived mesenchymal stem cells into endothelial cells. Stem Cell Research and Therapy, 2015, vol. 6, no. 1, p. 4. https://doi.org/10.1186/scrt538


Review

Views: 463


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)