Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Мolecular-genetic analysis of determinants encoding β-galactosidases of bacteria Bifidobacterium longum BIM B-813 D

https://doi.org/10.29235/1029-8940-2022-67-3-274-284

Abstract

The molecular-genetic analysis of the bacterial genome of the strain Blongum BIM B-813D distinguished by a high level of β-galactosidase production was performed. Genes Bgal_small_NlacZ1bgaB1bgaB2 and bgaB3, and lacZ2, encoding the synthesis of β-galactosidases, were revealed in the deciphered genomeIt was shown that the genes lacZ1bgaB2, and bgaB3 characterized by an enhanced degree of similarity to the genes of closely related bifidobacterial species, presumably code for the enzymes catalyzing the specific reactions of hydrolysis and transglycosylation of carbohydrates. It was found that the enzymes BgaB1, BgaB2 and BgaB3 belong to the GH42 family of glycosyl hydrolases, whereas the enzymes LacZ1 and LacZ2 – to the GH2 family. The genome domains responsible for the synthesis of β-galactosidases in the strain Blongum BIM B-813D were studied in detail. A comparative analysis of the locus of lacZ1 in Blongum BIM B-813D and the similar genome fragment AS143_01230 from B. longum subsp. longum MC-42 detected the presence of the transposase gene ISL3 in the former strain. It was suggested that the insertion of the sequence of ISL3 in the lacZ1 locus resulted in the modified gene expression and the increased production of β-galactosidase in the strain Blongum BIM B-813D.

About the Authors

A. N. Morozova
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Antonina N. Morozova – Researcher

2, Kuprevich Str., 220141, Minsk



A. E. Akhremchuk
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Artur E. Akhremchuk – Junior Researcher

2, Kuprevich Str., 220141, Minsk



N. А. Golovnyova
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Natalia A. Golovnyova – Ph. D. (Biol.), Head of the Labo­ ratory

2, Kuprevich Str., 220141, Minsk



References

1. Nikonova E. L., Popova E. N. (eds.). Mikrobiota. Moscow, Media Sfera Publ., 2019. 256 p. (in Russian).

2. Mitsuoka T. Development of functional foods. Bioscience of Microbiota, Food and Health, 2014, vol. 33, no. 3, pp. 117‒128. https://doi.org/10.12938/bmfh.33.117

3. Rodriguez C. I., Martiny J. B. H. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genomics, 2020, vol. 21, no. 1, art. 26. https://doi.org/10.1186/s12864-019-6435-1

4. Klijn A., Mercenier A., Arigoni F. Lessons from the genomes of bifidobacteria. FEMS Microbiology Reviews, 2005, vol. 29, no. 3, pp. 491‒509. https://doi.org/10.1016/j.femsre.2005.04.010

5. Pokusaeva K., Fitzgerald D., van Sinderen G. F. Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 2011, vol. 6, no. 3, pp. 285‒306. https://doi.org/10.1007/s12263-010-0206-6

6. Uchil P. D., Nagarajan A., Kumar P. β-Galactosidase. Cold Spring Harbor Protocols, 2017, vol. 2017, no. 10. https://doi.org/10.1101/pdb.top096198

7. Zolnere K. Ciprovica I. The comparison of commercially available β-galactosidases for dairy industry: review. The Annual 23th International scientific conference “Research for Rural Development 2017” (Jelgava (Latvia), May 17–19, 2017). Vol. 1. Jelgava, 2017, pp. 215–222.

8. Guerrero C., Vera C., Conejeros R., Illanes A. Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology, 2015, vol. 70, pp. 9‒17. https://doi.org/10.1016/j.enzmictec.2014.12.006

9. Morozova A. N., Golovneva N. A. The use of chemical mutagenesis to generate a strain of bifidobacteria with increased production of β-galactosidase. Molodezh’ v nauke ‒ 2011: materialy Mezhdunarodnoi nauchnoi konferentsii molodykh uchenykh (g. Minsk, 25‒29 aprelya 2011 goda). Chast’ 3: Seriya biologicheskikh nauk; Seriya meditsinskikh nauk [Youth in Science – 2011: Proceedings of the International scientific conference of young scientists (Minsk, April 25–29, 2011). Part 3: Biological sciences series; Medical sciences series]. Minsk, 2011, pp. 132–135 (in Russian).

10. Morozova A. N., Okhremchuk A. E., Golovneva N. A. Genome characteristics of Bifidobacterium longum BIM B­813D, reflecting the ability of bacteria to adapt to the environment. Mikrobnye biotekhnologii: fundamental’nye i prikladnye aspekty: sbornik nauchnykh trudov. Tom 13 [Microbial biotechnologies: fundamental and applied aspects: collection of sci­ entific works. Volume 13]. Minsk, 2021, pp. 66‒76 (in Russian).

11. Tupikin A. E., Kalmykova A. I., Kabilov M. Draft genome sequence of the probiotic Bifidobacterium longum subsp. longum strain MC­42. Genome Announcements, 2016, vol. 4, no. 6, pp. e01411­16. https://doi.org/10.1128/genomeA.01411­16

12. Devika N. T., Raman K. Deciphering the metabolic capabilities of Bifidobacteria using genome­scale metabolic models. Scientific Reports, 2019, vol. 9, no. 1, art. 18222. https://doi.org/10.1038/s41598­019­54696­9

13. Kaoutari A., Armougom F., Gordon J. I., Raoult D., Henrissat B. The abundance and variety of carbohydrate­active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, vol. 11, no. 7, pp. 497‒504. https://doi.org/10.1038/nrmicro3050

14. Juers D. H., Heightman T. D., Vasella A., McCarter J. D., Mackenzie L., Withers S. G., Matthews B. W. A Structural view of the action of Escherichia coli (lacZ)‚ β­galactosidase. Biochemistry, 2001, vol. 40, no. 49, pp. 14781‒14794. https://doi.org/10.1021/bi011727i

15. Janeček Š., Svensson B., MacGregor E. A. α­Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cellular and Molecular Life Sciences, 2014, vol. 71, no. 7, pp. 1149‒1170. https://doi.org/10.1007/s00018­013­1388­z

16. Morozova A., Golovnyova N., Ryabaya N., Safonova M. Galactosidases of strain Bifidobacterium Longum Bim В­813d with transglycosylating activity. Eurasian Journal of Applied Biotechnology, 2021, no. 2. https://doi.org/10.11134/btp.2.2021.5

17. Guglielmetti1 S., Mayo B., Álvarez­Martín P. Mobilome and genetic modification of bifidobacteria. Beneficial Microbes, 2013, vol. 4, no. 2, pp. 143‒166. https://doi.org/10.3920/BM2012.0031

18. Wheatley R. W., Lo S., Jancewicz L. J., Dugdale M. L., Huber R. E. Structural explanation for allolactose (lac operon inducer) synthesis by lacZ β­galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor. Journal of Biological Chemistry, 2013, vol. 288, no. 18, pp. 12993‒3005. https://doi.org/10.1074/jbc.M113.455436

19. Zafar H., Saier M. H. (Jr.) Comparative analyses of the transport proteins encoded within the genomes of nine bifidobacterium species. Microbial Physiology, 2022, vol. 32, no. 1–2, pp. 30‒44. https://doi.org/10.1159/000518954

20. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hedi­ ger M. A. Cloning and characterization of a mammalian proton­coupled metal­ion transporter. Nature, 1997, vol. 388, no. 6641, pp. 482–488. https://doi.org/10.1038/41343

21. Ravcheev D. A., Khoroshkin M. S., Laikova O. N., Tsoy O. V., Sernova N. V., Petrova S. A., Rakhmaninova A. B., Novichkov P. S., Gelfand M. S., Rodiono D. A. Comparative genomics and evolution of regulons of the LacI­family transcription factors. Frontiers in Microbiology, 2014, vol. 5, art. 294. https://doi.org/10.3389/fmicb.2014.00294

22. Milani Ch., Turroni F., Duranti S., Lugli G. A., Mancabelli L., Ferrario Ch., Sinderen D., Ventura M. Genomics of the genus Bifidobacterium reveals species­specific adaptation to the glycan­rich gut environment. Applied and Environmental Microbiology, 2016, vol. 82, no. 4, pp. 980‒991. https://doi.org/10.1128/AEM.03500­15


Review

Views: 347


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)