1. Микробиота / под ред. Е. Л. Никонова, Е. Н. Поповой. ‒ М. : Медиа Сфера, 2019. ‒ 256 с.
2. Mitsuoka, T. Development of functional foods / T. Mitsuoka // Biosci. Microbiota Food Health. - 2014. - Vol. 33, N 3. - P. 117‒128. https://doi.org/10.12938/bmfh.33.117
3. Rodriguez, C. I. Evolutionary relationships among bifidobacteria and their hosts and environments / C. I. Rodriguez, J. B. H. Martiny // BMC Genomics. - 2020. - Vol. 21, N 1. ‒ Art. 26. https://doi.org/10.1186/s12864-019-6435-1
4. Klijn, A. Lessons from the genomes of bifidobacteria / A. Klijn, A. Mercenier, F. Arigoni // FEMS Microbiol. Rev. - 2005. - Vol. 29, N 3. - P. 491‒509. https://doi.org/10.1016/j.femsre.2005.04.010
5. Pokusaeva, K. Carbohydrate metabolism in Bifidobacteria / K. Pokusaeva, G. F. Fitzgerald, D. van Sinderen // Genes Nutr. - 2011. - Vol. 6, N 3. - P. 285‒306. https://doi.org/10.1007/s12263-010-0206-6
6. Uchil, P. D. β-Galactosidase / P. D. Uchil, A. Nagarajan, P. Kumar // Cold Spring Harb. Protoc. - 2017. - Vol. 2017, N 10. https://doi.org/10.1101/pdb.top096198
7. Zolnere, K. The comparison of commercially available β-galactosidases for dairy industry: review / K. Zolnere, Ciprovica // The Annual 23th International scientific conference “Research for Rural Development 2017” (Jelgava (Latvia), May 17-19, 2017) / Latvia Univ. of Agriculture. - Jelgava, 2017. - Vol. 1. - P. 215-222.
8. Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates / C. Guerrero [et al.] // Enzyme Microb. Technol. - 2015. - Vol. 70. - P. 9‒17. https://doi.org/10.1016/j.enzmictec.2014.12.006
9. Морозова, А. Н. Использование химического мутагенеза для получения штамма бифидобактерий с повышенной продукцией β-галактозидазы / А. Н. Морозова, Н. А. Головнева // Молодежь в науке ‒ 2011 : материалы Междунар. науч. конф. молодых ученых, г. Минск, 25‒29 апр. 2011 г. : в 5 ч. ‒ Минск, 2012. ‒ Ч. 3 : Сер. биол. наук ; Сер. мед. наук / редкол. : И. Д. Волотовский (гл. ред.) [и др.]. ‒ С. 132-135.
10. Морозова, А. Н. Особенности генома Bifidobacterium longum БИМ B-813Д, отражающие адаптацию бактерий к среде обитания / А. Н. Морозова, А. Э. Охремчук, Н. А. Головнева // Микробные биотехнологии: фундаментальные и прикладные аспекты : сб. науч. тр. / редкол. : Э. И. Коломиец [и др.]. - Минск, 2021. - Т. 13. - С. 66‒76.
11. Tupikin, A. E. Draft genome sequence of the probiotic Bifidobacterium longum subsp. longum strain MC-42 / A. E. Tupikin, A. I. Kalmykova, M. Kabilov // Genome Announc. - 2016. - Vol. 4, N 6. - P. e01411-16. https://doi.org/10.1128/genomeA.01411-16
12. Devika, N. T. Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models / N. T. Devika, K. Raman // Sci. Rep. - 2019. - Vol. 9, N 1. - Art. 18222. https://doi.org/10.1038/s41598-019-54696-9
13. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota / A. E. Kaoutari [et al.] // Nat. Rev. Microbiol. - 2013. - Vol. 11, N 7. - P. 497‒504. https://doi.org/10.1038/nrmicro3050
14. A structural view of the action of Escherichia coli (lacZ), β-galactosidase / D. H. Juers [et al.] // Biochemistry. - 2001. - Vol. 40, N 49. - P. 14781‒14794. https://doi.org/10.1021/bi011727i
15. α-Amylase: an enzyme specificity found in various familiesof glycoside hydrolases / Š. Janeček [et al.] // Cell. Mol. Life Sci. - 2014. - Vol. 71, N 7. - P. 1149-1170. https://doi.org/10.1007/s00018-013-1388-z
16. Galactosidases of strain Bifidobacterium Longum Bim В-813d with transglycosylating activity / A. Morozova [et al.] // Eurasian J. Appl. Biotechnol. - 2021. - N 2. https://doi.org/10.11134/btp.2.2021.5
17. Guglielmetti1, S. Mobilome and genetic modification of bifidobacteria / S. Guglielmetti1, B. Mayo, P. Álvarez-Martín // Beneficial Microbes. - 2013. - Vol. 4, N 2. - P. 143‒166. https://doi.org/10.3920/BM2012.0031
18. Structural explanation for allolactose (lac operon inducer) synthesis by lacZ β-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor / R. W. Wheatley [et al.] // J. Biol. Chem. - 2013. - Vol. 288, N 18. - P. 12993‒3005. https://doi.org/10.1074/jbc.M113.455436
19. Zafar, H. Comparative analyses of the transport proteins encoded within the genomes of nine bifidobacterium species / Н. Zafar, M. H. Saier (Jr.) // Microb. Physiol. - 2022. - Vol. 32, N 1-2. - P. 30‒44. https://doi.org/10.1159/000518954
20. Cloning and characterization of a mammalian proton-coupled metal-ion transporter / H. Gunshin [et al.] // Nature. - 1997. - Vol. 388, N 6641. - P. 482‒488. https://doi.org/10.1038/41343
21. Comparative genomics and evolution of regulons of the LacI-family transcription factors / D. A. Ravcheev [et al.] // Front. Microbiol. - 2014. - Vol. 5. - Art. 294. https://doi.org/10.3389/fmicb.2014.00294
22. Genomics of the genus bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment / C. Milani [et al.] // Appl. Environ. Microbiol. - 2016. - Vol. 82, N 4. - P. 980‒991. https://doi.org/10.1128/AEM.03500-15