Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Distribution of pBS72-like conjugative plasmids among natural bacteria of the genus Bacillus

https://doi.org/10.29235/1029-8940-2022-67-2-219-228

Abstract

As a result of the research pBS72-like replicons were detected with a frequency of 27 % in soil samples isolated from various natural sources on the territory of Belarus, which contained bacteria B. subtilis (were detected in 22 samples out of 36 studied). It was established that pBS72-like conjugative plasmids are present in the cells of natural bacteria B. subtilis circulating in Pakistan, China, and the Netherlands, and are also found in bacteria B. rugosus isolated in India. The homology of proteins responsible for replication (Rep-proteins) and conjugation (VirB4, VirB6, VirB11, VirD4, Mob proteins) was 99–100 %. Similar replicons (Rep proteins are 62 % identical) capable of being transmitted by conjugation (key conjugation proteins are 60–80 % identical) were found in the bacteria Bacillus sp., B. licheniformis, B. paralicheniformis and B. subtilis, allocated in the USA, Australia, China and South Korea.

About the Authors

A. S. Hurynovich
Belarusian State University
Belarus

Anastasiya S. Hurynovich – Junior Researcher.

4, Nezavisimosti Ave., 220030, Minsk



N. E. Satsunkevich
Belarusian State University
Belarus

Natallia E. Satsunkevich – Junior Researcher.

4, Nezavisimosti Ave., 220030, Minsk



M. A. Titok
Belarusian State University
Belarus

Marina A. Titok – D. Sc. (Biol.), Professor.

4, Nezavisimosti Ave., 220030, Minsk



References

1. Leifert C., Li H., Chidburee S., Hampson S., Workman S., Sigee D., Epton H. A., Harbour A. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of Applied Microbiology, 1995, vol. 78, no. 2, pp. 97–108. https://doi.org/10.1111/j.1365-2672.1995.tb02829.x

2. Schallmey M., Singh A., Ward O. P. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 2004, vol. 50, no. 1, pp. 1–17. https://doi.org/10.1139/w03-076

3. Meijer W. J., Wisman G. B., Terpstra P., Thorsted P. B., Thomas C. M., Holsappel S., Venema G., Bron S. Rolling-circle plasmids from Bacillus subtilis: complete nucleotide sequences and analyses of genes of pTA1015, pTA1040, pTA1050 and pTA1060, and comparisons with related plasmids from gram-positive. FEMS Microbiology Reviews, 1998, vol. 21, no. 4, pp. 337–368. https://doi.org/10.1111/j.1574-6976.1998.tb00357.x

4. Titok M. A., Chapuis J., Selezneva Y. V., Lagodich A. V., Prokulevich V. A., Ehrlich S. D., Jannière L. Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid, 2003, vol. 49, no. 1, pp. 53–62. https://doi.org/10.1016/s0147-619x(02)00109-9

5. Poluektova E. U., Fedorina E. A., Lotareva O. V., Prozorov A. A. Plasmid transfer in Bacilli by a self-transmissible plasmid p19 from a Bacillus subtilis soil strain. Plasmid, 2004, vol. 52, no. 3, pp. 212–217. https://doi.org/10.1016/j.plasmid.2004.07.001

6. Harwood C. R., Mouillon J. M., Pohl S., Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 2018, vol. 42, no. 6, pp. 721–738. https://doi.org/10.1093/femsre/fuy028

7. te Riele H., Michel B., Ehrlich S. D. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureu. Proceeding of the National Academy of Sciences. USA, 1986, vol. 83, no. 8, pp. 2541–2545. https://doi.org/10.1073/pnas.83.8.2541

8. Maniatis T., Frich E., Sembuk Dzh. Genetic engineering techniques: molecular cloning. Moscow, Mir Publ., 1984, 479 p. (in Russian).

9. Darling A. C., Mau B., Blattner F. R., Perna N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 2004, vol. 14, no. 7, pp. 1394–1403. https://doi.org/10.1101/gr.2289704

10. Titok M. A., Lagodich A. V., Selezneva Yu. V. Plasmid composition of Bacillus subtilis bacteria isolated from natural sources. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 2: Khimiya. Biologiya. Geografiya [Bulletin of the Belarusian State University. Series 2: Chemistry. Biology. Geography], 2003, no. 3, pp. 35–38 (in Russian).

11. Titok M. A., Chapuis J., Selezneva Y. V., Lagodich A. V., Prokulevich V. A., Ehrlich S. D., Jannière L. Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid, 2003, vol. 49, no. 1, pp. 53–62. https://doi.org/10.1016/s0147-619x(02)00109-9

12. Ding J., Zhang Y., Deng Y., Cong J., Lu H., Sun X., Yang C., Yuan T., Van Nostran, J. D., Li D., Zhou J., Yang Y. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Scientific Reports, 2015, vol. 5, art. 7994. https://doi.org/10.1038/srep07994

13. Siles J. A., Rachid C. T., Sampedro I., García-Romera I., Tiedje J. M. Microbial diversity of a mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS ONE, 2014, vol. 9, no. 7, p. e103035. https://doi.org/10.1371/journal.pone.0103035

14. Gurinovich A. S., Titok M. A. Molecular genetic and functional analysis of the pBS72 plasmid from Bacillus subtilis environmental isolates. Mikrobiologiya [Microbiology], 2020, vol. 89, no. 6, pp. 646–657 (in Russian).

15. Berendsen E. M., Wells-Bennik M. H., Krawczyk A. O., de Jong A., van Heel A., Eijlander R. T., Kuipers O. P. Draft genome sequences of 10 Bacillus subtilis strains that form spores with high or low heat resistance. Genome Announcements, 2016, vol. 4, no. 2, pp. e00124‒16. https://doi.org/10.1128/genomeA.00124-16


Review

Views: 341


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)