Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Molecular-genetic structure of Pseudomonas phage BIM BV-45 D

https://doi.org/10.29235/1029-8940-2022-67-2-190-196

Abstract

Full nucleotide sequence of bacteriophage Pseudomonas phage BIM BV-45 D – active component of biopesticide Multiphage intended for control of crop bacterial diseases caused by Pseudomonas syringae was analyzed. It was found that phage genome is represented by linear double-stranded DNA sized 40383 b. p. (average GC contents equals 58 %), comprising 46 open reading frames, including 13 described in genomes of closely related phages. 4 control sequences typical for bacterial genes recognized by sigma factor (σ70) of RNA polymerase were detected, specific phage promoters were not localized. The identity was established of the majority of protein amino acid sequences of the Pseudomonas phage BIM BV-45 D with the proteins of the known Pseudomonas phage Andromeda (95‒100 %), at the same time, the sequences of the DNA endonuclease protein (gene 22) are similar (63 %) to the corresponding protein of Pseudomonas phage PollyC. The obtained data suggest that the mosaic structure of Pseudomonas phage BIM BV-45 D genome is due to recombinant rearrangements between the afore-mentioned phages.

About the Authors

T. A. Pilipchuk
Institute of Microbiology, National Academy of Sciences of Belarus
Belarus

Tatsiana A. Pilipchuk – Researcher.

2, Kuprevich Str., 2220141, Minsk



A. E. Akhremchuk
Institute of Microbiology, National Academy of Sciences of Belarus
Belarus

Artur E. Akhremchuk – Junior Researcher.

2, Kuprevich Str., 2220141, Minsk



E. I. Kаlаmiуets
Institute of Microbiology, National Academy of Sciences of Belarus
Belarus

Emiliya I. Kаlаmiуets – Academician, Dr. Sc. (Biol.), Professor, Chief Researcher.

2, Kuprevich Str., 2220141, Minsk



References

1. Katter E., Sulakvelidze A. (eds.). Bacteriophages: biology and application. Moscow, Nauchnyi mir Publ., 2012. 636 p. (in Russian).

2. Pilipchuk T. A., Gerasimovich A. D., Anan’eva I. N., Kolomiets E. I., Popov F. A., Novik G. I. Biopesticide ‘Multiphage’ based on phages of phytopathogenic bacteria Pseudomonas syringae and Pseudomonas fluorescens used in agriculture to control plant diseases. Mikrobnye biotekhnologii: fundamental’nye i prikladnye aspekty: sbornik nauchnykh trudov. Tom 7 [Microbial biotechnologies: fundamental and applied aspects: collection of scientific works. Vol. 7]. Minsk, 2015, pp. 197‒219 (in Russian).

3. Babraham Bioinformatics ‒ FastQC A Quality Control tool for High Throughput Sequence Data. Available at : http:// www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed 09.11.2021).

4. Bolger A. M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics Oxford Journal, 2014, vol. 30, no. 15, pp. 2114‒2120. https://doi.org/10.1093/bioinformatics/btu170

5. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. Journal of Molecular Biology, 1990, vol. 215, no. 3, pp. 403‒410. https://doi.org/10.1016/S0022-2836(05)80360-2

6. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. GenBank. Nucleic Acids Research, 2005, vol. 33, suppl. 1, pp. D34‒D38. https://doi.org/10.1093/nar/gki063

7. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S. [et al.] SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Molecular Cell Biology, 2012, vol. 19, no. 5, pp. 455‒477. https://doi.org/10.1089/cmb.2012.0021

8. Langmead B., Salzberg S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods, 2012, vol. 9, no. 4, pp. 357‒359. https://doi.org/10.1038/nmeth.1923

9. Milne I., Stephen G., Bayer M., Cock P. J. A., Pritchard L., Cardle L., Shaw P. D., Marshall D. Using Tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics, 2013, vol. 14, no. 2, pp. 193‒202. https://doi.org/10.1093/bib/bbs012

10. Lavigne R., Sun W. D., Volckaert G. PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics, 2004, vol. 20, no. 5, pp. 629‒635. https://doi.org/10.1093/bioinformatics/btg456

11. Solovyev V., Salamov A. Automatic annotation of microbial genomes and metagenomic sequences. In metagenomics and its applications in agriculture, biomedicine and environmental studies. Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. New York, 2011, pp. 61‒78.

12. ARNold, finding terminators at IGM ‒ Web Server. Available at : http://rna.igmors.u-psud.fr/toolbox/arnold/ (accessed 09.11.2021).

13. Standard Protein BLAST. Available at : https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins (accessed 09.11.2021).

14. InterProScan – InterPro. Available at : https://www.ebi.ac.uk/interpro/search/sequence/ (accessed 09.11.2021).

15. NCBI Conserved Domain Search. Available at : https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi (accessed 09.11.2021).

16. SnapGene Viewer 6.0.2 Crack Plus Activation Code. Available at : http://hardcracked.com/previous/snapgene-viewer/85873/27 (accessed 21.02.2022).

17. Nishimura Y., Yoshida T., Kuronishi M., Uehara H., Ogata H., Goto S. ViPTree: the viral proteomic tree server. Bioinformatics, 2017, vol. 33, no. 15, pp. 2379‒2380. https://doi.org/10.1093/bioinformatics/btx157

18. Magill D. J., Skvortsov T. A., Kulakov L. A. Genomic hypervariability of phage Andromeda is unique among known dsDNA viruses. bioRxiv. Available at : https://www.biorxiv.org/content/10.1101/619015v4.full.pdf+html (accessed 21.02.2022).

19. Sajben-Nagy E., Maróti G., Kredics L., Horváth B., Párducz A., Vágvölgyi C., Manczinger L. Isolation of new Pseudomonas tolaasii bacteriophages and genomic investigation of the lytic phage BF7. FEMS Microbiology Letters, 2012, vol. 332, no. 2, pp. 162‒169. https://doi.org/10.1111/j.1574-6968.2012.02592.x


Review

Views: 348


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)