Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Proteomic analysis of Pseudomonas chlororaphis subsp. aurantiacа strains capable of phenasine compounds overproduction

https://doi.org/10.29235/1029-8940-2022-67-1-91-104

Abstract

Proteomic analysis is a highly effective method for bacteria identification and the elucidation of protein's content in prokaryotic cells at different growth conditions. To our knowledge this approach is hardly ever used for characterization of producers of biologically active substances. The understanding of the changes in protein profile in mutant strains capable of biologically active substances overproduction helps to recognize the biochemical and molecular basis of metabolic changes which lead to overproduction. So that, proteomic analysis could be especially useful for optimization the producer's creation techniques.

The purpose of current research was to carry out proteomic profiling of bacteria P. chlororaphis subsp. aurantiaca mutant strains capable of overproduction of phenazine antibiotics. Microbiological and biochemical methods were used for these aims.

In current research a proteomic analysis of strains of P. chlororaphis subsp. aurantiaca producing phenazines was carried out. An early (during log-phase) onset of expression of individual genes of phz-operon which codes enzymes for phenazines synthesis was demonstrated. It was also found that the wild type strain has the highest level of PhzO protein. The gene encoding this protein is located outside the phz-operon. We weren't able to establish the correlation among PhzO protein content and concentration of the derivatives for which appearance PhzO is responsible. A general tendency of producer strains towards the accumulation of enzymes and proteins of the antioxidant defense system was revealed. Producer strains also demonstrate a significant increase in the concentration of proteins involved in DNA repair as well as chaperones involved in the native protein conformation maintenance.

About the Authors

K. G. Verameyenka
Belarusian State University
Belarus

Katsiaryna G. Verameyenka - Ph. D. (Biol.), Associate Professor, Belarusian State University.

4, Nezavisimosti Ave., 220030, Minsk.



M. A. Shapira
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Michail A. Shapira – Researcher, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus.

5/2, Academician V.F. Kuprevich Str., 220141, Minsk.



V. A. Naumouskaya
Wroclaw University of Natural Sciences
Poland

Volga A. Naumouskaya – Undergraduate, Wroclaw University of Natural Sciences.

Agencja Rozwoju Aglomeracji Wroclawskiej SA pl. Solny 14, 50-062 Wroclaw.



D. D. Ashmankevich
Center for Examinations and Tests in Health Service Republican Unitary Enterprise
Belarus

Denis D. Ashmankevich – specialist, Center for Examinations and Tests in Health Service Republican Unitary Enterprise.

2a, Tovarishcheski Lane, 220037, Minsk.



N. P. Maximova
Belarusian State University
Belarus

Natalia P. Maximova - D. Sc. (Biol.), Professor, Head of the Department, Belarusian State University.

4, Nezavisimosti Ave., 220030, Minsk.



References

1. Strashnikova N. S., Martynova G. P., Salmina A. B., Olovyannikova R. Ya., Kutyakov V. A., Tokhidpur A. Possibilities of using proteomic analysis in infectious diseases. Byulleten' Sibirskoi meditsiny [Bulletin of Siberian medicine], 2019, vol. 18, no. 2, pp. 248-261 (in Russian).

2. Bespyatykh Yu. A., Shitikov E. A., Il'ina E. N. Proteomic approaches in the study of mycobacteria. Acta Naturae, 2017, vol. 9, no. 1, pp. 16-26 (in Russian).

3. Kim S. I. L., Choi J. S., Kahng H. Y. A Proteomics strategy for the analysis of bacterial biodegradation pathways. OMICS: Journal of Integrative Biology, 2007, vol. 11, no. 3, pp. 280-294. https://doi.org/10.1089/omi.2007.0019

4. Opoku-Temeng C., Onyedibeb K. I., Aryalc U. K., Sintimb H. O. Proteomic analysis of bacterial response to a 4-hydro-xybenzylidene indolinone compound, which re-sensitizes bacteria to traditional antibiotics. Journal of Proteomics, 2019, vol. 202, art. 103368. https://doi.org/10.1016/j.jprot.2019.04.018

5. Heng Li, Juan Yu, Qingmei Ge, Mao Liu, Zhu Tao, Hang Cong. Synthesis of dibenzo[a,j]phenazine compounds using hemicucurbit[6]uril-catalyzed oxidative dimerization of 2-arylamines. ChemCatChem, 2020, vol. 12, no. 22, pp. 5727-5732. https://doi.org/10.1002/cctc.202000956

6. Veremeenko E. G. Creation and characterization of regulatory mutants of Pseudomonas aurantiaca B-162 resistant to toxic analogues of aromatic amino acids. Biodiversity. Ecology. Adaptation. Evolution: materials of III International conference of young scientists, 2007, pp. 231-232.

7. Veremeenko E. G., Maksimova N. P. Increase of phenazine antibiotic production in bacteria Pseudomonas aurantiaca by cloning the cluster of PhzIR-genes. Advances in Medicine and Biology, 2012, vol. 50, pp. 195-206.

8. Gerster S., Kwon T., Ludwig C., Matondo M., Vogel C., Marcotte E. M., Aebersold R., Buhlmann P Statistical approach to protein quantification. Molecular and Cellular Proteomics, 2014, vol. 13, no. 2, pp. 666-677. https://doi.org/10.1074/mcp.M112.025445.

9. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 1951, vol. 193, no. 1, pp. 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

10. Alqarni B., Colley B., Klebensberger Ja., McDougald D., Rice S. A. Expression stability of 13 housekeeping genes during carbon starvation of Pseudomonas aeruginosa. Journal of Microbiological Methods, 2016, vol. 127, pp. 182-187. https://doi.org/10.1016/j.mimet.2016.06.008

11. Levitch M. E., Stadtman E. R. A study of the biosynthesis of phenazine-1-carboxylic acid. Archive Biochemica et Biophysica, 1964, vol. 106, pp. 194-199. https://doi.org/10.1107/S1744309111012346

12. Mavrodi D. V., Blankenfeldt W., Thomashow L. S., Mentel M. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annual Review of Phytopathology, 2006, vol. 44, pp. 417-445. https://doi.org/10.1146/annurev.phyto.44.013106.145710

13. Price-Whelan A., Dietrich L. E. P., Newman D. K. Rethinking “secondary” metabolism: physiological roles for phenazine antibiotics. Natural Chemical Biology, 2006, vol. 2, no. 2, pp. 71-78. https://doi.org/10.1038/nchembio764

14. Mentel M., Ahuja E. G., Mavrodi D. V., Breinbauer R., Thomashow L. S., Blankenfeldt W. Of two make one: the biosynthesis of phenazines. ChemBioChem, 2009, vol. 10, no. 14, pp. 2295-2304. https://doi.org/10.1002/cbic.200900323

15. Veremeenko E. G., Maksimova N. P. Activation of the antioxidant complex in Pseudomonas aurantiaca - producer of phenazine antibiotics. Microbiology, 2010, vol. 79, no. 4, pp. 439-444. https://doi.org/10.1134/S0026261710040041

16. Flohe L., Toppo S., Cozza G., Ursini F. A comparison of thiol peroxidase mechanisms. Antioxidants & Redox Signaling, 2011, vol. 15, no. 3, pp. 763-780. https://doi.org/10.1089/ars.2010.3397

17. Leeper T., Zhang S., Van Voorhis W. C., Myler P. J., Varani G. Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens. Acta Crystallographica, Section F, Structural biology and crystallization communications, 2011, vol. 67, no. 9, pp. 1141-1147. https://doi.org/10.1107/S1744309111012346

18. Dubbs J. M., Mongkolsuk S. Peroxiredoxins in bacterial antioxidant defense. Peroxiredoxin Systems, 2007, vol. 44, pp. 143-193. https://doi.org/10.1007/978-1-4020-6051-9_7

19. Shen T., Rui B., Zhou H., Zhang X., Yi Y., Wen H., Shi Y. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress. Molecular BioSystems, 2013, vol. 9, no. 1, pp. 121-132. https://doi.org/10.1039/c2mb25285f

20. Mullarky E., Cantley L. C. Diverting glycolysis to combat oxidative stress. Innovative Medicine: Basic Research and Development. Tokyo, 2015, pp. 3-23.

21. Muller C., Sanguinetti M., Riboulet E., Hubert L., Posteraro B., Fadda G., Auffray Y., Rinc A. Characterization of two signal transduction systems involved in intracellular macrophage survival and environmental stress response in Enterococcus faecalis. Journal of Molecular Microbiological Biotechnology, 2008, vol. 14, pp. 59-66. https://doi.org/10.1159/000106083

22. Alkhateeb A. A., Connor J. R. Nuclear ferritin: a new role for ferritin in cell biology. Biochimica et Biophysica Acta (BBA) - General Subjects, 2010, vol. 1080, no. 8, pp. 793-797. https://doi.org/10.1016/j.bbagen.2010.03.017

23. Lund P. A. Microbial molecular chaperones. Advances in Microbiological Physiology, 2001, vol. 44, pp. 93-140. https://doi.org/10.1016/s0065-2911(01)44012-4

24. Chang C., Myhre R. O., McCallum K. C., Maynard J. A. Entzminger K. C. The Skp chaperone helps fold soluble proteins in vitro by inhibiting aggregation. Biochemestry, 2012, vol. 51, no. 24, pp. 4822-4834. https://doi.org/10.1021/bi300412y

25. Unal C. M., Steinert M. Microbial peptidyl-prolyl cis/trans isomerases (ppiases): virulence factors and potential alternative drug targets. Microbiology Molecular Biology Review, 2014, vol. 78, no. 3, pp. 544-571. https://doi.org/10.1128/MMBR.00015-14

26. Antony E., Lohman T. M. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Seminars of Cell Development Biology, 2019, vol. 86, pp. 102-111. https://doi.org/10.1016/j.semcdb.2018.03.017

27. Zhang R., Evans G., Rotella F. J., Westbrook E. M., Beno D., Huberman E., Chimiak A. J., Collart F. R. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase. Biochemistry, 1999, vol. 38, no. 15, pp. 46914700. https://doi.org/10.1021/bi982858v

28. Velasco-Garda R., Mujica-Jimenez C., Mendoza-Hernandez G., Munoz-Clares R. A. Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Journal of Bacteriology, 1999, vol. 181, no. 4, pp. 12921300. https://doi.org/10.1128/JB.181.4.1292-1300.1999

29. Polevoi S. A., Veremeenko E. G. Analysis of the activity of enzymes of the antioxidant complex in the bacteria Pseudomonas chlororaphis subsp. aurantiaca resistant to hydrogen peroxide. 75-ya nauchnaya konferentsiya studentov i aspirantov Belorusskogo gosudarstvennogo universiteta: materialy konferentsii (Minsk, 14-23 maya 2018 g.). Chast' 2 [The 75th scientific conference of students and postgraduates of the Belarusian State University: conference proceedings (Minsk, May 14-23, 2018). Part 2]. Minsk, 2018, pp. 330-333 (in Russian).


Review

Views: 737


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)