Interaction of polyamidoamine dendrimers and amphiphylic dendrons with lipid membranes
https://doi.org/10.29235/1029-8940-2021-66-4-497-512
Abstract
Polyamidoamine (PAMAM) dendrimers and amphiphilic dendrons are one of the types of nanomaterials characterized by a hyperbranched structure of polymer branches. In the case of dendrimers, the dendrons are covalently linked at the central focal point. In the case of amphiphilic dendrons, dendrons are non-covalently linked by hydrophobic interactions, forming micellar structures. These nanoparticles are widely used in biology and medicine as contrast agents, carriers of drugs and genetic material. Their use in scientific practice requires an understanding of the basic mechanisms of their interaction with membranes – the main obstacle to the entry of dendrimers into the cell. This review discusses the regularities of the interaction of dendrimers and amphiphilic dendrons with lipid membranes. Various models of dendrimer-membrane interactions are described as the basis for the penetration of dendrimers and amphiphilic nanoparticles into cells. Keywords: polyamidoamine dendrimers, amphiphilic dendrons, lipid membranes, cells, antitumor therapeutics, antibacterial agents, diagnostics, genetic therapy.
About the Authors
M. M. TerehovaBelarus
Maria M. Terehova – Junior Researcher
27, Akademicheskaya Str., 220072, Minsk
V. M. Abashkin
Belarus
Viktar M. Abashkin – Junior Researcher
27, Akademicheskaya Str., 220072, Minsk
V. A. Zhogla
Belarus
Victoriya A. Zhogla – Junior Researcher
27, Akademicheskaya Str., 220072, Minsk
I. V. Halets-Bui
Belarus
Inessa V. Halets-Bui – Ph. D. (Biol.), Senior Researcher
27, Akademicheskaya Str., 220072, Minsk
S. Zh. Loznikova
Belarus
Svetlana Zh. Loznikova – Ph. D. (Biol.), Senior Researcher
27, Akademicheskaya Str., 220072, Minsk
M. Bryshewska
Poland
Maria Bryshewska – D. Sc. (Biol.), Professor, Head of the Laboratory
141/143, Pomorska, 90-236, Lodz
M. Ionov
Poland
Maksim Ionov – D. Sc. (Biol.), Professor
141/143, Pomorska, 90-236, Lodz
I. Waczulikova
Slovakia
Iveta Waczulikova – D. Sc. (Biol.), Professor
6, Šafárikovo námestie, 81499, Bratislava
J.-P. Majoral
France
Jean-Pierre Majoral – D. Sc. (Chem.), Professor, Head of the Laboratory
205, route de Narbonne, 31077, Toulouse Cedex 4
D. G. Shcharbin
Belarus
Dzmitry G. Shcharbin – D. S c. (Biol.), A ssociate P rofessor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk
References
1. Zhang Z. Y., Smith B. D. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjugate Chemistry, 2000, vol. 11, no. 6, pp. 805–814. https://doi.org/10.1021/bc000018z
2. Karoonuthaisiri N., Titiyevskiy K., Thomas J. Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Colloids and Surfaces B: Biointerfaces, 2003, vol. 27, no. 4, pp. 365–375. https://doi.org/10.1016/S0927-7765(02)00115-7
3. Ottaviani M., Matteini P., Brustolon M., Turro N., Jockusch S., Tomalia D. Characterization of starburst dendrimers and vesicle solutions and their interactions by CW- and Pulsed-EPR, TEM, and dynamic light scattering. Journal of Physical Chemistry B, 1998, vol. 102, no. 31, pp. 6029–6039. https://doi.org/10.1021/jp980715c
4. Ottaviani M. F., Daddi R., Brustolon M., Turro N. J., Tomalia D. A. Structural modifications of DMPC vesicles upon interaction with poly(amidoamine) dendrimers studied by CW-electron paramagnetic resonance and electron spin echo techniques. Langmuir, 1999, vol. 15, no. 6, pp. 1973–1980. https://doi.org/10.1021/la9803068
5. Ottaviani M. F., Favuzza P., Bigazzi M., Turro N. J., Jockusch S., Tomalia D. A. A TEM and EPR investigation of the competitive binding of uranyl ions to starburst dendrimers and liposomes: potential use of dendrimers as uranyl ion sponges. Langmuir, 2000, vol. 16, no. 19, pp. 7368–7372. https://doi.org/10.1021/la000355w
6. Mecke A., Uppuluri S., Sassanella T. M., Lee D.-K., Ramamoorthy A., Baker J. R., Orr B. G., Banaszak Holl M. M. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chemistry and Physics of Lipids, 2004, vol. 132, no. 1, pp. 3–14. https://doi.org/10.1016/j.chemphyslip.2004.09.001
7. Mecke A., Majoros I. J., Patri A. K., Baker J. R. J., Holl M. M., Orr B. G. Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir, 2005, vol. 21, no. 23, pp. 10348–10354. https://doi.org/10.1021/la050629l
8. Hong S., Bielinska A. U., Mecke A., Keszler B., Beals J. L., Shi X., Balogh L., Orr B. G., Baker J. R. J., Banaszak Holl M. M. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjugate Chemistry, 2004, vol. 15, no. 4, pp. 774–782. https://doi.org/10.1021/bc049962b
9. Hong S., Hessler J. A., Banaszak Holl M. M., Leroueil P., Mecke A., Orr B. G. Physical interactions of nanoparticles with biological membranes: the observation of nanoscale hole formation. Journal of Chemical Health and Safety, 2006, vol. 13, no. 3, pp. 16–20. https://doi.org/10.1016/j.chs.2005.09.004
10. Parimi S., Barnes T., Prestidge C. PAMAM dendrimer interactions with supported lipid bilayers: a kinetic and mechanistic investigation. Langmuir, 2008, vol. 24, pp. 13532–13539. https://doi.org/10.1021/la8022858
11. Kelly C. V., Liroff M. G., Triplett L. D., Leroueil P. R., Mullen D. G., Wallace J. M., Meshinchi S., Baker J. R., Orr B. G., Banaszak Holl M. M. Stoichiometry and structure of poly(amidoamine) dendrimer-lipid complexes. ACS Nano, 2009, vol. 3, no. 7, pp. 1886–1896. https://doi.org/10.1021/nn900173e
12. Klajnert B., Epand R. M. PAMAM dendrimers and model membranes: differential scanning calorimetry studies. International Journal of Pharmaceutics, 2005, vol. 305, no. 1–2, pp. 154–166. https://doi.org/10.1016/j.ijpharm.2005.08.015
13. Klajnert B., Janiszewska J., Urbanczyk-Lipkowska Z., Bryszewska M., Epand R. M. DSC studies on interactions between low molecular mass peptide dendrimers and model lipid membranes. International Journal of Pharmaceutics, 2006, vol. 327, no. 1–2, pp. 145–152. https://doi.org/10.1016/j.ijpharm.2006.07.018
14. Lombardo D., Calandra P., Bellocco E., Laganà G., Barreca D., Magazù S., Wanderlingh U., Kiselev M. A. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. Biochimica et Biophysica Acta, 2016, vol. 1858, no. 11, pp. 2769–2777. https://doi.org/10.1016/j.bbamem.2016.08.001
15. Kelly C. V., Leroueil P. R., Orr B. G., Holl M. M. B., Andricioaei I. Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination. Journal of Physical Chemistry. B, 2008, vol. 112, no. 31, pp. 9346–9353. https://doi.org/10.1021/jp8013783
16. Jin Y., Hammer J., Pate M., Zhang Y., Zhu F., Zmuda E., Blazyk J. Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials. Antimicrobial Agents and Chemotherapy, 2005, vol. 49, no. 12, pp. 4957–4964. https://doi.org/10.1128/AAC.49.12.4957-4964.2005
17. Moraes M. L., Baptista M. S., Itri R., Zucolotto V., Oliveira O. N. Immobilization of liposomes in nanostructured layer-by-layer films containing dendrimers. Materials Science & Engineering. C, Biomimetic and Supramolecular Systems, 2008, vol. 28, no. 4, pp. 467–471. https://doi.org/10.1016/j.msec.2007.04.017
18. Lai J., Yuan C., Thomas J. Single-cell measurements of polyamidoamine dendrimer binding. Annals of Biomedical Engineering, 2002, vol. 30, pp. 409–416. https://doi.org/10.1114/1.1470180
19. Sideratou Z., Foundis J., Tsiourvas D., Nezis I. P., Papadimas G., Paleos C. M. A novel dendrimeric “Glue” for adhesion of phosphatidyl choline-based liposomes. Langmuir, 2002, vol. 18, no. 13, pp. 5036–5039. https://doi.org/10.1021/la020150i
20. Pantos A., Tsiourvas D., Nounesis G., Paleos C. M. Interaction of functional dendrimers with multilamellar liposomes: design of a model system for studying drug delivery. Langmuir, 2005, vol. 21, no. 16, pp. 7483–7490. https://doi.org/10.1021/la0510331
21. Tsogas I., Sideratou Z., Tsiourvas D., Theodossiou T. A., Paleos C. M. Interactive transport of guanidinylated poly(propylene imine)-based dendrimers through liposomal and cellular membranes. Chembiochemistry, 2007, vol. 8, no. 15, pp. 1865–1876. https://doi.org/10.1002/cbic.200700289
22. Roy B., Panda A. K., Parimi S., Ametov I., Barnes T., Prestidge C. A. Physico-chemical studies on the interaction of dendrimers with lipid bilayers. 1. Effect of dendrimer generation and liposome surface charge. Journal of Oleo Science, 2014, vol. 63, no. 11, pp. 1185–1193. https://doi.org/10.5650/jos.ess14081
23. Esfand R., Tomalia D. A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 2001, vol. 6, no. 8, pp. 427–436. https://doi.org/10.1016/s1359-6446(01)01757-3
24. Cloninger M. J. Biological applications of dendrimers. Current Opinion in Chemical Biology, 2002, vol. 6, no. 6, pp. 742–748. https://doi.org/10.1016/s1367-5931(02)00400-3
25. Shcharbin D., Drapeza A., Loban V., Lisichenok A., Bryszewska M. The breakdown of bilayer lipid membranes by dendrimers. Cellular & Molecular Biology Letters, 2006, vol. 11, no. 2, pp. 242–248. https://doi.org/10.2478/s11658-006-0018-2
26. Cherenkevich S. N., Khmel’nitskii A. I., Drapeza A. I., Bakovich I. A. Single ion channels and macroscopic conductivity of bilayer lipid membranes. Biophysics, 1989, vol. 34, no. 1, pp. 45–48.
27. Weaver J. C., Chizmadzhev Y. A. Theory of electroporation : a review. Bioelectrochemistry and Bioenergetics, 1996, vol. 41, no. 2, pp. 135–160. https://doi.org/10.1016/S0302-4598(96)05062-3
28. Mecke A., Uppuluri S., Sassanella T. M., Lee D. K., Ramamoorthy A., Baker J. R. Jr., Orr B. G., Banaszak Holl M. M. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chemistry and Physics of Lipids, 2004, vol. 132, no. 1, pp. 3–14. https://doi.org/10.1016/j.chemphyslip.2004.09.001
29. Klajnert B., Epand R. M. PAMAM dendrimers and model membranes: differential scanning calorimetry studies. International Journal of Pharmaceutics, 2005, vol. 305, no. 1–2, pp. 154–166. https://doi.org/10.1016/j.ijpharm.2005.08.015
30. Zhang Z. Y., Smith B. D. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjugate Chemistry, 2000, vol. 11, no. 6, pp. 805–814. https://doi.org/10.1021/bc000018z
31. Kakorin S., Neumann E. Ionic conductivity of electroporated lipid bilayer membranes. Bioelectrochemistry, 2002, vol. 56, no. 1–2, pp. 163–166. https://doi.org/10.1016/s1567-5394(02)00040-3
32. Brzozowska I., Figaszewski Z. A. The influence of pH on phosphatidylcholine monolayer at the air/aqueous solution interface. Colloids and Surfaces B: Biointerfaces, 2003, vol. 27, no. 4, pp. 303–309. https://doi.org/10.1016/S0927-7765(02)00095-4
33. Quinn P., Dawson R. M. C. The pH dependence of calcium adsorption onto anionic phospholipid monolayers. Chemistry and Physics of Lipids, 1972, vol. 8, no. 1, pp. 1–9. https://doi.org/10.1016/0009-3084(72)90038-2
34. Chernitskii E. A., Vorobei A. V. Sructure and functions of erythrocyte membranes. Minsk, Nauka i tekhnika Publ., 1981. 216 p. (in Russian).
35. Halets I., Shcharbin D., Klajnert B., Bryszewska M. Contribution of hydrophobicity, DNA and proteins to the cytotoxicity of cationic PAMAM dendrimers. International Journal of Pharmaceutics, 2013. vol. 454, no. 1, pp. 1–3. https://doi.org/10.1016/j.ijpharm.2013.06.061
36. Jones C. F., Campbell R. A., Brooks A. E., Assemi S., Tadjiki S., Thiagarajan G., Mulcock C., Weyrich A. S., Brooks B. D., Ghandehari H., Grainger D. W. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano, 2012, vol. 6, no. 11, pp. 9900–9910. https://doi.org/10.1021/nn303472r
37. Jain K., Kesharwani P., Gupta U., Jain N. K. Dendrimer toxicity: Let’s meet the challenge. International Journal of Pharmaceutics, 2010, vol. 394, no. 1–2, pp. 122–142. https://doi.org/10.1016/j.ijpharm.2010.04.027
38. Merino S., Brauge L., Caminade A.M., Majoral J. P., Taton D., Gnanou Y. Synthesis and characterization of linear, hyperbranched, and dendrimer-like polymers constituted of the same repeating unit. Chemistry, 2001, vol. 7, no. 14, pp. 3095–3105. https://doi.org/10.1002/1521-3765(20010716)7:14<3095::aid-chem3095>3.0.co;2-s
39. Tomalia D. A., Khanna S. N. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive mendeleev-like nanoperiodic tables. Chemical Reviews, 2016, vol. 116, no. 4, pp. 2705–2774. https://doi.org/10.1021/acs.chemrev.5b00367
40. Joester D., Losson M., Pugin R., Heinzelmann H., Walter E., Merkle H. P., Diederich F. Amphiphilic dendrimers: novel self-assembling vectors for efficient gene delivery. Angewandte Chemie International Edition Engl., 2003, vol. 42, no. 13, pp. 1486–1490. https://doi.org/10.1002/anie.200250284
41. Percec V., Wilson D. A., Leowanawat P., Wilson C. J., Hughes A. D., Kaucher M. S. [et al.]. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science, 2010, vol. 328, no. 5981, pp. 1009–1014. https://doi.org/10.1126/science.1185547
42. Sherman S. E., Xiao Q., Percec V. Mimicking complex biological membranes and their programmable glycan ligands with dendrimersomes and glycodendrimersomes. Chemical Reviews, 2017, vol. 117, no. 9, pp. 6538–6631. https://doi.org/10.1021/acs.chemrev.7b00097
43. Elizondo-García M. E., Márquez-Miranda V., Araya-Durán I., Valencia-Gallegos J. A., González-Nilo F. D. Selfassembly behavior of amphiphilic janus dendrimers in water: a combined experimental and coarse-grained molecular dynamics simulation approach. Molecules, 2018, vol. 23, no. 4, p. 969. https://doi.org/10.3390/molecules23040969
44. Torre P., Xiao Q., Buzzacchera I., Sherman S. E., Rahimi K., Kostina N. Y. [et al.]. Encapsulation of hydrophobic components in dendrimersomes and decoration of their surface with proteins and nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2019, vol. 116, no. 3, pp. 15378–15385. https://doi.org/10.1073/pnas.1904868116
45. Wagner J., Dillenburger M., Simon J., Oberländer J., Landfester K., Mailänder V., Ng D. Y. W., Müllen K., Weil T. Amphiphilic dendrimers control protein binding and corona formation on liposome nanocarriers. Chemical Communications (Camb.), 2020, vol. 56, no. 61, pp. 8663–8666. https://doi.org/10.1039/d0cc02486d
46. Wagner J., Li L., Simon J., Krutzke L., Landfester K., Mailänder V., Müllen K., Ng D. Y. W., Wu Y., Weil T. Amphiphilic polyphenylene dendron conjugates for surface remodeling of Adenovirus 5. Angewandte Chemie, 2020, vol. 59, no. 14, pp. 5712–5720. https://doi.org/10.1002/anie.201913708
47. Qiu J., Chen L., Zhan M., Laurent R., Bignon J., Mignani S., Shi X., Caminade A. M., Majoral J. P. Facile synthesis of amphiphilic fluorescent phosphorus dendron-based micelles as antiproliferative agents: first investigations. Bioconjugate Chemistry, 2021, vol. 32, no. 2, pp. 339–349. https://doi.org/10.1021/acs.bioconjchem.0c00716
48. Wu L. P., Ficker M., Christensen J. B., Trohopoulos P. N., Moghimi S. M. Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjugate Chemistry, 2015, vol. 26, no. 7, pp. 1198–1211. https://doi.org/10.1021/acs.bioconjchem.5b00031
49. Pérez-Herrero E., Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 2015, vol. 93, pp. 52–79. https://doi.org/10.1016/j.ejpb.2015.03.018
50. Morgan M. T., Nakanishi Y., Kroll D. J., Griset A. P., Carnahan M. A., Wathier M., Oberlies N. H., Manikumar G., Wani M. C., Grinstaff M. W. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Research, 2006, vol. 66, no. 24, pp. 11913–11921. https://doi.org/10.1158/0008-5472.CAN-06-2066
51. Dufès C., Uchegbu I. F., Schätzlein A. G. Dendrimers in gene delivery. Advanced Drug Delivery Reviews, 2005, vol. 57, no. 15, pp. 2177–2202. https://doi.org/10.1016/j.addr.2005.09.017
52. Chen C. Z., Beck-Tan N. C., Dhurjati P., van Dyk T. K., LaRossa R. A., Cooper S. L. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules, 2000, vol. 1, no. 3, pp. 473–480. https://doi.org/10.1021/bm0055495
53. Sun B., Slomberg D. L., Chudasama S. L., Lu Y., Schoenfisch M. H. Nitric oxide-releasing dendrimers as antibacterial agents. Biomacromolecules, 2012, vol. 13, no. 10, pp. 3343–3354. https://doi.org/10.1021/bm301109c
54. Kannan R. M., Nance E., Kannan S., Tomalia D. A. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. Journal of Internal Medicine, 2014, vol. 276, no. 6, pp. 579–617. https://doi.org/10.1111/joim.12280
55. Terehova M., Dzmitruk V., Abashkin V., Kirakosyan G., Ghukasyan G., Bryszewska M. [et al.]. Comparison of the effects of dendrimer, micelle and silver nanoparticles on phospholipase A2 structure. Journal of Biotechnology, 2021, vol. 331, pp. 48–52. https://doi.org/10.1016/j.jbiotec.2021.03.009