Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Possible response of molecular biotechnology to call SARS-CoV-2

https://doi.org/10.29235/1029-8940-2021-66-3-357-369

Abstract

COVID-19 pandemic caused by coronavirus SARS-CoV-2 affected virtually all life aspects in most countries and nations. During 2020 around 100 mln of Earth inhabitants contracted this morbid infection and 2 mln people died thereafter. It is natural therefore that many pharmaceutical companies around the globe have joined into the race aimed at elaboration of prophylactic antiviral vaccines. However, the option can not be ruled out that parenteral vaccines to counter rapidly mutating pandemic coronavirus may be designed hastily, neglecting due tests of remote side effects, so that in the long run they risk to be expelled from the marked due to doubtful safety and efficiency.

As a real alternative to traditional vaccination techniques the present mini-review has proposed application of intranasal adjuvant nano-vaccine. If necessary, this approach may be complemented with pharmacological inactivation of coronavirus under the impact of ribo-favipiravir, recombinant arginine deiminase, RNAse L or lactoferrin, as well as biogenic silver or copper nanoparticles - the preparations derived from up-to-date molecular biotechnological processes.

About the Authors

A. I. Zinchenko
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Anatoli I. Zinchenko - Corresponding Member, D. Sc. (Biol.), Professor, Head of the Laboratory, Institute of Microbiology of the National Academy of Sciences of Belarus.

2, Kuprevich Str., 220141, Minsk.



L. L. Birichevskaya
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Larisa L. Birichevskaya - Ph. D. (Biol.), Associate Professor, Senior Researcher, Institute of Microbiology of the National Academy of Sciences of Belarus.

2, Kuprevich Str., 220141, Minsk.



I. S. Kazlouski
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Illia S. Kazlouski - Master of Biol. Sci., Researcher, Institute of Microbiology of the National Academy of Sciences of Belarus.

2, Kuprevich Str., 220141, Minsk.



A. B. Bulatovski
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Aleksei B. Bulatovski - Master of Biol. Sci., Junior Researcher, Institute of Microbiology of the National Academy of Sciences of Belarus.

2, Kuprevich Str., 220141, Minsk.



References

1. COVID-19 data repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, 2021. Available at: https://github.com/CSSEGISandData/COVID-19 (accessed 07.03.2021).

2. de Wit E., van Doremalen N., Falzarano D., Munster V. J. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 2016, vol. 14, no. 8, pp. 523-534. https://doi.org/10.1038/nrmicro.2016.81

3. Kerry R. G., Malik S., Redda Y. T., Sahoo S., Patra J. K., Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine: Nanotechnology, Biology and Medicine, 2019, vol. 18, pp. 196–220. https://doi.org/10.1016/j.nano.2019.03.004

4. Tyrrell D. А., Bynoe M. L. Cultivation of viruses from a high proportion of patients with colds. Lancet, 1966, vol. 289, no. 7428, pp. 76-77. https://doi.org/10.1016/s0140-6736(66)92364-6

5. Prasad S., Potdar V., Cherian S., Abraham P., Basu А. Transmission electron microscopy imaging of SARS-CoV-2. Indian Journal of Medical Research, 2020, vol. 151, no. 2-3, pp. 241-243. https://doi.org/10.4103/ijmr.ijmr_577_20

6. Andersen K. G., Holmes E. C., Garry R. F. The proximal origin of SARS-CoV-2. Nature Medicine, 2020, vol. 26, no. 4, pp. 450-452. https://doi.org/10.1038/s41591-020-0820-9

7. Dube T., Ghosh А., Mishra J., Kompella U. B., Panda J. J. Repurposed drugs, molecular vaccines, immune-modulators, and nanotherapeutics to treat and prevent COVID-19 associated with SARS-CoV-2, a deadly nanovector. Advanced Therapy, 2020, vol. 4, no. 2, art. 2000172. https://doi.org/10.1002/adtp.202000172

8. SARS-CoV-2 life cycle: stages and inhibition targets, 2020. Available at: https://www.antibodies-online.com/resources/18/5410/sars-cov-2-life-cycle-stages-and-inhibition-targets (accessed 07.03.2021).

9. Le T. T., Andreadakis /., Kumar А., Roman R. G., Tollefsen S., Saville M., Mayhew S. The COVID-19 vaccine development landscape. Nature Reviews Drug Discovery, 2020, vol. 19, no. 5, pp. 305-306. https://doi.org/10.1038/d41573-020-00073-5

10. Chen W. H., Strych U., Hotez P. J., Bottazzi M. E. The SARS-CoV-2 vaccine pipeline: an overview. Current Tropical Medicine Reports, 2020, vol. 7, no. 2, pp. 61-64. https://doi.org/10.1007/s40475-020-00201-6

11. Allie S. R., Bradley J. E., Mudunuru U., Schultz M. D., Graf B. A., Lund F. E., Randall T. D. The establishment of resident memory B cells in the lung requires local antigen encounter. Nature Immunology, 2019, vol. 20, no. 1, pp. 97-108. https://doi.org/10.1038/s41590-018-0260-6

12. Landi A., Law J., Hockman D., Logan M., Crawford K., Chen C. [et al.]. Superior immunogenicity of HCV envelope glycoproteins when adjuvanted with cyclic-di-AMP, a STING activator or archaeosomes. Vaccine, 2017, vol. 35, no. 50, pp. 6949-6956. https://doi.org/10.1016/j.vaccine.2017.10.072

13. Lin L. C., Huang C. Y., Yao B. Y., Lin J. C., Agrawal A., Algaissi A. [et al.]. Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against Middle East respiratory syndrome coronavirus. Advanced Functional Materials, 2019, vol. 29, no. 28, art. 1807616. https://doi.org/10.1002/adfm.201807616

14. Kazlovskii I. S., Zinchenko A. I., Solov'eva A. V., Novikova O. N., Lomako Yu. V. Construction of Escherichia coli strain, producing di-adenylate cyclase and its application for cyclic di-AMP synthesis. Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2015, no. 4, рр. 51-55 (in Russian).

15. Wu Y., Gu W., Chen C., Do S. T., Xu Z. P. Optimization of formulations consisting of layered double hydroxide nanoparticles and small interfering RNA for efficient knockdown of the target gene. ACS Omega, 2018, vol. 3, no. 5, pp. 4871-4877. https://doi.org/10.1021/acsomega.8b00397

16. Shchokolova A. S., Rymko A. N., Burko D. V., Kvach S. V., Zinchenko A. I. Intercalation and release of dinucleotides from a nanodimensional layered double hydroxide. Chemical and Biochemical Physics: A Systematic Approach to Experiments, Evaluation, and Modeling. Oakville (Canada), 2016, pp. 317-327.

17. Block S. L., Yogev R., Hayden F. G., Ambrose C. S., Zeng W., Walker R. E. Shedding and immunogenicity of live attenuated influenza vaccine virus in subjects 5-49 years of age. Vaccine, 2008, vol. 26, no. 38, pp. 4940-4946. https://doi.org/10.1016/j.vaccine.2008.07.013

18. Pronker E. S., Weenen T. C., Commandeur H., Claassen E., Osterhaus A. Risk in vaccine research and development quantified. PLoS ONE, 2013, vol. 8, no. 3, e57755. https://doi.org/10.1371/journal.pone.0057755

19. Dutta A., Roy A., Roy L., Chattopadhyay S., Chatterjee S. Immune response and possible therapeutics in COVID-19. RSC Advances, 2021, vol. 11, pp. 960-977. https://doi.org/10.1039/D0RA08901J

20. Wang Y., Zhang D., Du G. Remdesivir in adults with severe COVID-19: a randomized, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, vol. 395, no. 10263, pp. 1569-1578. https://doi.org/10.1016/S0140-6736(20)31022-9

21. Elfiky A. A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sciences, 2020, vol. 253, art. 117592. https://doi.org/10.1016/j.lfs.2020.117592

22. Furuta Y., Gowen B. B., Takahashi K., Shiraki K., Smee D. F., Barnard D. L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research, 2013, vol. 100, no. 2, pp. 446-454. https://doi.org/10.1016/j.antiviral.2013.09.015

23. Cai Q., Yang M., Liu D., Chen J., Shu D., Xia J., Liao X., Gu Y., Cai Q., Yang Y. Experimental treatment with Favi-piravir for COVID-19: an open-label control study. Engineering, 2020, vol. 6, no. 10, pp. 1192-1198. https://doi.org/10.1016/j.eng.2020.03.007

24. de Clercq E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chemical Asian Journal, 2019, vol. 14, pp. 3962-3968. https://doi.org/10.1002/asia.201900841

25. Mishima E., Anzai N., Miyazaki M., Abe T. Uric acid elevation by favipiravir, an antiviral drug. Tohoku Journal of Experimental Medicine, 2020, vol. 251, no. 2, pp. 87-90. https://doi.org/10.1620/tjem.251.87

26. Beresnev A. I., Kvach S. V., Eroshevskaya L. A., Zinchenko A. I. Method of producing kinetinriboside: patent of the Republic of Belarus, no. 20102, 2016 (in Russian).

27. Salganik R. I., Batalina T. A., Berdishevskaya L. S., Mosolov A. N. Inhibition of RNA synthesis and re production of tickencephalitis virus under the influence of ribonuclease. Doklady Akademii nauk SSSR [Scientific reports of the Academy of Sciences of USSR], 1968, vol. 180, no. 6, pp. 1473-1475 (in Russian).

28. Il'inskaya O. N., Shakh Makhmud R. Ribonucleases as antiviral agents. Molekularnaya biologiya [Molecular biology], 2014, vol. 48, no. 5, pp. 707-717 (in Russian).

29. Makarov A. A., Ilinskaya O. N. Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Letters, 2003, vol. 540, no. 1-3, pp. 15-20. https://doi.org/10.1016/s0014-5793(03)00225-4

30. Bialek S., Boundy E., Bowen V., Chow N., Cohn A., Dowling N., Ellington S., Gierke R., Hall A., MacNeil J. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) United States, February 12-March 16, 2020. Morbidity and Mortality Weekly Report, 2020, vol. 69, no. 12, pp. 343-346. https://doi.org/10.15585/mmwr.mm6912e2

31. Rong E., Wang X., Chen H., Yang C., Hu J., Liu W., Wang Z., Chen X., Zheng H., Pu J. Molecular mechanisms for the adaptive switching between the OAS/RNase L and OASL/RIG-I pathways in birds and mammals. Frontiers in Immunology, 2018, vol. 9, art. 1398. https://doi.org/10.3389/fimmu.2018.01398

32. Zinchenko A. I., Kvach S. V., Eroshevskaya L. A., Bulatovski A. B. Engineering of bacterial strain-producer of chimeric protein containing human annexin A5 and Escherichia coli adenosine deaminase. Eastern European Scientific Journal (Dusseldorf), 2017, no. 4, pp. 5-11.

33. Grimes J. M., Khan S., Badeaux M., Rao R. M., Rowlinson S. W., Carvajal R. D. Arginine depletion as a therapeutic approach for patients with COVID-19. International Journal of Infectious Diseases, 2021, vol. 102, pp. 566-570. https://doi.org/10.1016/j.ijid.2020.10.100

34. Izzo F., Montella M., Orlando A. P. Pegylated arginine deiminase lowers hepatitis C viral titers and inhibits nitric oxide synthesis. Journal of Gastroenterology and Hepatology, 2007, vol. 22, no. 1, pp. 86-91. https://doi.org/10.1111/j.1440-1746.2006.04463.x

35. Rascon-Cruz Q., Espinoza-Sanchez E. A., Siqueiros-Cendon T. S., Nakamura-Bencomo S. I., Arevalo-Gallegos S., Iglesias-Figueroa B. F. Lactoferrin: a glycoprotein involved in immunomodulation, anticancer, and antimicrobial processes. Molecules, 2021, vol. 26, no. 1, art. 205. https://doi.org/10.3390/molecules26010205

36. Wei M., Yuan J., Liu Y., Fu T., Yu X., Zhang Z. J. Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA, 2020, vol. 323, no. 13, pp. 1313-1314. https://doi.org/10.1001/jama.2020.2131

37. Habib H. M., Ibrahim S., Zaim A., Ibrahim W. H. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomedicine and Pharmacotherapy, 2021, vol. 136, art. 111228. https://doi.org/10.1016/j.biopha.2021.111228

38. Kim J., Wessling-Resnick M. The role of Iron metabolism in lung inflammation and injury. Journal of Allergy and Therapy, 2012, vol. 3, no. 4. https://doi.org/10.4172/2155-6121.S4-004

39. Cavezzi A., Troiani E., Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clinics and Practice, 2020, vol. 10, no. 2, art. 1271. https://doi.org/10.4081/cp.2020.1271

40. Morniroli D., Consales A., Crippa B. L., Vizzari G., Ceroni F., Cerasani J., Colombo L, Mosca F., Gianni M. L. The antiviral properties of human milk: a multitude of defense tools from mother nature. Nutrients, 2021, vol. 13, no. 2, art. 694. https://doi.org/10.3390/nu13020694

41. Krupinka A. M., Bogucki Z. Clinical aspects of the use of lactoferrin in dentistry. Journal of Oral Biosciences, 2021. https://doi.org/10.1016/j.job.2021.02.005

42. Chang R., Ng T. B., Sun W. Z. Lactoferrin as potential preventative and adjunct treatment for COVID-19. International Journal of Antimicrobial Agents, 2020, vol. 56, no. 3, art. 106118. https://doi.org/10.1016/j.ijantimicag.2020.106118

43. Semak I., Budzevich A., Maliushkova E., Kuzniatsova V., Popkov N., Zalutsky I., Ivashkevich O. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin. Transgenic Research, 2019, vol. 28, pp. 465-478. https://doi.org/10.1007/s11248-019-00165-y

44. Lukashevich V. S., Budevich A. I., Semak I. V., Kuznetsova V. N., Malyushkova E. V., Pyzh A. E. [et al.]. Production of recombinant human lactoferrin from the milk of goat-producers and its physiological effects. Doklady Natsional'noi akademii nauk Belarusi [Reports of the National Academy of Sciences of Belarus], 2016, vol. 60, no. 1, pp. 72-81 (in Russian).

45. Kowalczyk P., Szymczak M., Maciejewska M., Laskowski L., Laskowska M., Ostaszewski R., Skiba G., Franiak-Pietryga I. All that glitters is not silver - a new look at microbiological and medical applications of silver nanoparticles. International Journal of Molecular Sciences, 2021, vol. 22, no. 2, art. 854. https://doi.org/10.3390/ijms22020854

46. Lara H. H., Garza-Trevino E. N., Ixtepan-Turrent L., Singh D. K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanobiotechnology, 2011, vol. 9, art. 30. https://doi.org/10.1186/1477-3155-9-30

47. Morris D., Ansar M., Speshock J., Ivanciuc T., Qu Y., Casola A., Garofalo R. P. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses, 2019, vol. 11, no. 8, art. 732. https://doi.org/10.3390/v11080732

48. Han J., Chen L., Duan S. M., Yang Q. X., Yang M., Gao C., Zhang B. Y., He H., Dong X. P. Efficient and quick inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts. Biomedical and Environmental Sciences, 2005, vol. 18, no. 3, pp. 176-180.

49. Jeremiah S. S., Miyakawa K., Morita T., Yamaoka Y., Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 2020, vol. 533, no. 1, pp. 195-200. https://doi.org/10.1016/j.bbrc.2020.09.018

50. Hati S., Bhattacharyya S. Impact of thiol-disulfide balance on the binding of Covid-19 spike protein with angiotensin-converting enzyme 2 receptor. ACS Omega, 2020, vol. 5, no. 26, pp. 16292-16298. https://doi.org/10.1021/acsomega.0c02125

51. Balagna C., Perero S., Percivalle E., Nepita E. V., Ferraris M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics, 2020, vol. 1, art. 100006. https://doi.org/10.1016/j.oceram.2020.100006

52. Zhang D., Ma X. I., Gu Y., Huang H., Zhang G. W. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry, 2020, vol. 8, art. 799. https://doi.org/10.3389/fchem.2020.00799

53. Sinenok D. N., Birichevskaya L. L., Zinchenko A. I. Biochemical preparation of copper nanoparticles. Sakharovskie chteniya 2017 goda: ekologicheskie problemy XXI veka: materialy 17-i mezhdunarodnoi nauchnoi konferentsii (Minsk, 18-19 maya 2017 goda) [Sakharov Readings 2017: environmental problems of the 21st century: proceedings of the 17th International scientific conference (Minsk, May 18-19, 2017)]. Minsk, 2017, pp. 219-220 (in Russian).

54. Kruk T., Szczepanowicz K., Stefanska J., Socha R. P., Warszynski P. Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, vol. 128, pp. 17-22. https://doi.org/10.1016/j.colsurfb.2015.02.009


Review

Views: 725


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)